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Abstract—Federated learning (FL) is capable of performing
large distributed machine learning tasks across multiple edge
users by periodically aggregating trained local parameters. To
address key challenges of enabling FL over a wireless fog-cloud
system (e.g., non-i.i.d. data, users’ heterogeneity), we first propose
an efficient FL algorithm based on Federated Averaging (called
FedFog) to perform the local aggregation of gradient parameters
at fog servers and global training update at the cloud. Next,
we employ FedFog in wireless fog-cloud systems by investigating
a novel network-aware FL optimization problem that strikes the
balance between the global loss and completion time. An iterative
algorithm is then developed to obtain a precise measurement
of the system performance, which helps design an efficient
stopping criteria to output an appropriate number of global
rounds. To mitigate the straggler effect, we propose a flexible
user aggregation strategy that trains fast users first to obtain
a certain level of accuracy before allowing slow users to join
the global training updates. Extensive numerical results using
several real-world FL tasks are provided to verify the theoretical
convergence of FedFog. We also show that the proposed co-design
of FL and communication is essential to substantially improve
resource utilization while achieving comparable accuracy of the
learning model.

Index Terms— Distributed learning, edge intelligence, fog com-
puting, federated learning, hierarchical fog/cloud, inner approx-
imation, resource allocation.

I. INTRODUCTION

OWADAYS, Internet-connected devices are often
equipped with advanced sensors that allow them
to collect and store large amounts of data locally. This
combined with the high computing capability of edge
devices promotes the fog-cloud computing paradigm which
brings data processing, storage, and intelligent control to
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the proximity of the network edge [1]. Besides, emerging
technologies (e.g., autonomous driving, industry automation)
are relying heavily on data-driven machine learning (ML)
approaches to enable near real-time applications [2]. However,
traditional ML models, which require that all local data is
sent to a centralized server for model training, may not be
practical due to high round-trip delays, energy constraints
and privacy-sensitive concerns of edge devices. Fortunately,
distributed ML is practically suited for the fog-cloud
computing, which aims at leveraging the advantages of the
increasing storage and computing capabilities of edge devices
to train ML models while keeping device datasets local.

Federated learning (FL) is an emerging distributed ML
framework that can address many challenges in implementing
ML over networks [3], [4]. The most widely used and effective
FL algorithm is Federated Averaging (FedAvg) [5]. The FL
optimization is commonly solved by an iterative procedure,
where each iteration includes local training update and global
aggregation. In particular, in each global round, edge devices
compute local updates based on their available datasets, typi-
cally using gradient descent methods, which are sent back to
the sever for global aggregation. Then, the server updates the
new global model and broadcasts it to all devices to start the
next global round of training. The main advantage of FedAvg
over traditional distributed ML algorithms is that each device
runs a series of local updates before communicating with the
server. This process results in less global updates and reduced
communication costs [5]-[7].

A. Related Works

In this section, we focus on the literature review of FL
algorithm and wireless FL performance optimization.

1) FL and Challenges: Inspired by FedAvg, FL has
attracted considerable attention in recent years in the ML
community (see a comprehensive survey in [8]). Several
works have attempted to address the main challenges of FL
(e.g., non independently and identically distribute (non-i.i.d.)
data among devices and resource constraints) for improving
communication-efficiency [9]-[11], incentive mechanism [12],
privacy-preserving [13], [14], and guaranteeing fairness [15]
and robustness [16]. However, these works mainly focused on
characterizing and optimizing the FL performance on over-
simplified and/or unrealistic communication models, and the
impact of wireless factors on FL is often not taken into
account.
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2) Wireless FL: Recently, there has been an increasing
effort in designing communications protocols and computa-
tional aspects of the FL implementation in wireless networks.
To improve the convergence speed of FL algorithms, schedul-
ing policies were proposed in [17], where only a portion of
users (UEs) are scheduled for updates at each global round.
The authors in [18] investigated the impact of various quan-
tization and transmission methods for wireless FL. Various
join FL model and radio resource allocation schemes have
been proposed in [19]-[21] to minimize either the global
loss function or the training time. While many works have
focused on efficient wireless communications between the
server and UEs to support FL [22]-[24], it is still challenging
to employ them in distributed environments due to the causal
setting (i.e., the loss value and associated costs of future
rounds are not available in advance). Notably, Mahmoudi et
al. [25] developed an iterative distributed algorithm which
characterizes the end-to-end delay as the per-iteration cost.
Liu er al. [26] proposed a client-edge-cloud hierarchical FL
algorithm, called HierFAVG, which allows performing partial
model aggregation at edge servers to improve communication-
efficiency. However, the realistic cost function taking into
account completion time was not considered in these works,
and also, computation and wireless factors (i.e., the transmit
power, UEs” CPU clock speed and bandwidth coefficients)
were not jointly optimized.

3) Hierarchical FL-Supported Fog-Cloud Networks:
Despite its potential, there have been only a few attempts to
improve the resource utilization of FL-supported fog-cloud
networks in the literature. Specifically, the authors in [27]
recently introduced a new architecture, called Fog Learning
(FogL), which leverages the multi-layer network structure of
fog computing to handle ML tasks. This work was extended
in [28] to develop a multi-stage hybrid model training, which
incorporates multi-stage parameter relaying across networks
layers. The work in [29] proposed FogFL to reduce energy
consumption and communication latency, where fog nodes
act as local aggregators to share location-based information
for applications with the similar environment. By taking into
account both the computational and communication costs,
it was shown in [30] that the network-aware optimization
greatly reduces the cost of model training. Very recently, the
authors in [31] and [32] studied a general cost optimization
of energy consumption and delay minimization within one
global iteration. However, the model training was not jointly
optimized in the global cost minimization. Wen et al. [33]
proposed a joint design of the scheduling and resource allo-
cation scheme in an hierarchical federated edge learning,
allowing a subset of helpers to upload their updated gradients
in each round of the model training. A privacy-preserving FL
in fog computing was also proposed in [34], requiring each
device to meet different privacy to resist data attacks. Here
our focus is the effects of communication and edge devices’
computation capability in realistic causal settings.

4) Straggler Effect in FL: is a major bottleneck in imple-
menting FL over wireless networks, i.e., when a user has poor
channel quality and significantly low computation capability,
resulting in higher training time. The promising approaches
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to mitigating the straggler effect include user sampling [5],
[23], [35] and user selection [36]-[38], which require only a
subset of users to participate in the training process. However,
to the best of our knowledge, these works neither consider
a co-design between model training and communication nor
simultaneously minimize associated training costs.

B. Research Gap and Main Contributions

Despite the potential benefits offered by FL, there are still
several inherent challenges in implementing hierarchical FL
over wireless fog-cloud networks, including but not limited
to high communication costs, heterogeneity of edge devices
(both datasets and computational capabilities), limited wireless
resources and straggler effects. Though in-depth results of
optimizing communication for FL. were presented in [17]—
[24], [31], [32], [37], they are not very practical for the
actual implementation because the unique characteristics of
the federated environment have not been fully addressed
in these works. Moreover, it is often considered that the
communication and model training are optimized separately
[20], [22], [23], [26], [31], [32], [37]. Joint learning and
communication [19] is done in the sense that all local losses
are available at the server in advance, which violates the FL
principle. We show in this paper that communication and FL
model training should be optimized on different time scales
in each global round. In [19], [20], [22]-[24], the upper
bound on the convergence of FL algorithms is characterized
by providing the trade-off between the convergence rate and
number of global aggregations, which is commonly known in
ML literature, but not taking into the cost of model training.
Although the higher the number of global aggregations, the
lower the training loss that can be obtained, the associated cost
increases significantly. This phenomenon promotes a co-design
of hierarchical FL. and communication that strikes a good
balance between the accuracy of the learning model and the
running cost. In particular, the co-design should provide an
adequate number of global rounds with minimal completion
time while still guaranteeing the comparable accuracy of the
FL model.

In this paper, we propose a novel network-aware opti-
mization framework to enable hierarchical FL over a cloud-
fog system, taking into account all the issues mentioned
previously. In the considered system, the cloud server (CS)
and fog servers (FSs) do not have access to the UEs’ local
datasets, thus preserving data privacy. The main goal is to
minimize the global loss function and completion time in
a single framework, two prime objectives in FL algorithms,
which are conflicting. A direct application of an offline algo-
rithm to solve such a problem is inapplicable as it requires
complete information at the beginning of the training process,
which is impractical in federated settings. Towards a realistic
causal setting, we decompose the network-aware optimization
problem into two sub-problems, namely the hierarchical FL
and resource allocation, which are executed in different time
slots. The FedFog is capable of performing a flexible user
aggregation which allows fewer UEs to participate in the train-
ing process in each round, resulting in low completion time.



NGUYEN et al.: FedFog: NETWORK-AWARE OPTIMIZATION OF FL. OVER WIRELESS FOG-CLOUD SYSTEMS 8583

The convergence of FedAvg with partial user participation has
been studied in [35]. Our main contributions are summarized
as follows:

o We first propose an efficient FL algorithm for a fog-cloud

TABLE I
SUMMARY OF MAIN NOTATIONS AND SYMBOLS

system (called FedFog) based on FedAvg framework [5].
Acting as a participant, each FS plays the role of a local
aggregator that collects the local gradient parameters
trained at UEs and then forwards them to CS for global
training update, reducing network traffic of backhaul links
between FSs and CS. Compared to [26], we explicitly
provide the new convergence upper bound of FedFog with
a learning rate decay, taking into account non-i.i.d. data
and stochastic noise of the random sampling of mini-
batchs.

We formulate a novel network-aware FL problem for
wireless fog-cloud systems by jointly optimizing the
transmit power, UEs’ CPU clock speed and bandwidth
coefficients whose goal is to minimize the global loss
and completion time in a single framework while meeting
UEs’ energy constraints. To solve the resource allocation
sub-problem of of join computation and communica-
tion, we develop a simple yet efficient path-following

procedure based on inner approximation (IA) frame-
work [39], in which newly convex approximated func-
tions are derived to tackle nonconvex constraints.

o We characterize the discrete convex property of the gen-
eral cost function to design a stopping criteria to produce
a desirable number of global rounds without an additional
cost. We then propose the network-aware optimization
algorithm that solves the FL and communication prob-
lems in a distributed fashion.

o To further mitigate the straggler effect, we relax the
objective function to favor strong UEs. Then, we deter-
mine a time threshold that allows collecting only local
gradient parameters of strong UEs. Once a certain accu-
racy level is reached, the time threshold is increased to
allow slower UEs to join the training process, thereby
reducing completion time without compromising the
learning accuracy.

o We empirically evaluate the performance of the proposed
algorithms using real datasets. The results show that the
FedFog-based algorithms can improve network resource
utilization while achieving good performance in terms of
convergence rate and accuracy of the learning model.

Paper Organization and Mathematical Notations: The rest
of this paper is organized as follows. Preliminaries and def-
initions are described in Section II. The proposed FedFog
and the expected convergence rate are given in Section III.
The network-aware optimization algorithms are presented in
Section IV. Numerical results are analyzed in Section V, while
conclusions are draw in Section VI. The main notations and
symbols are summarized in Table I.

II. PRELIMINARIES AND DEFINITIONS
A. Wireless Fog-Cloud Computing Model

A generic fog-cloud computing architecture consists of three
layers [34], [40], as illustrated in Fig. 1.

o Cloud layer contains

F(w) & F;j(w) | Global loss function and local loss function
of UE (4,)
wi & wigj ) Global model at round g and local model of
UE (i, ) at global round g and local iteration ¢
Dij & Dj; Set of data samples and number of samples
of UE (3,)
IT&J Sets of fog nodes and UEs, respectively
Ji & J; Set and number of UEs at fog node ¢
G& L Sets of global rounds and local iterations
S(g) & S(g) Set and number of UEs selected at round g
g &/l Indexes of global round and local iteration
B, Mini-batch with size B
nd Step size (learning rate) at global round g
w* Optimal global model
pij(9) Transmit power coefficient of UE (i, 5)
fii(g) The CPU clock speed of UE (4, ) at round g
Bij(9) UL bandwidth fraction allocated to UE (i, 5)
at round g
(X, y) Inner product of vectors x and y
x| & |z Euclidean norm of vector x and absolute
value of z, respectively
h# Hermitian transpose of vector h
VF() Gradient of the function F'(-)
E{} Expectation of a random variable
CN(0,0?%) Circularly-symmetric complex Gaussian random
variable with zero mean and variance o>
C&R Sets of complex and real numbers, respectively
Cloud server
Cloud I:]
1 Control §JResource allocation
Fog q 1) ! 1;7 ) Fog servers
Network ((( ‘))) ((( 7))) Base stations ((( ;)))
p-- & &b
loT users @ 9 <-| 9 ° 6
Fig. 1. A generic architecture of wireless fog-cloud systems.

large-scale cloud data cen-
ters (CDCs) equipped with powerful processing units,
providing off-premise computing services to IoT users
(or UEs for short). In the context of FL, CS is mainly
responsible to collect local models generated by IoT UEs
to produce a new global model, which is then sent back
to them through FSs to start a new training round.

o Fog layer comprises a set of FSs deployed close to IoT

UEs that can perform local data processing services.
Each FS acts as a local aggregator to exchange the
model between CS and UEs, which is connected to a
base station (BS) via the wired backhaul link, while BS
communicates to its UEs through wireless links.

o User layer deploys a large number of IoT UEs collected

measurement data from the environment that is used to
train ML algorithms. Since IoT UEs are placed in the
vicinity of their FSs, allowing each UE to transmit the
trained parameters to its FS for local aggregations that
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can obtain low-latency high quality-of-experience (QoE)
of IoT UEs.

We consider a fog-cloud network consisting of a set
T 2 {1,2,...,1} of I fog servers (each fog server already
associated with one BS) and a set J = {1,2,...,J} of
J UEs. We assume that FS ¢ € 7 serves a separate set
Ji = {1,2,...,J;} of J; UEs with J = > ier Ji» and
each UE is associated with one FS only. In addition, one
learning process (i.e., the entire implementation of an FedFog
algorithm until convergence) requires G global rounds, each
with the same number of local updates, L. Let us denote
G 2 {0,1,....,G -1} and £ £ {0,1,...,L — 1} as the
sets of GG global rounds and L local iterations, respectively.
The number of global and local iterations may depend on the
specific ML application.

We denote user j € [J; associated with FS ¢ € Z by UE
(2, 7), which collects a local input data set D;; of D;; = |D;;|
data samples. Considering non-i.i.d. distributed data across the
network, we assume that D;; N Dy e = 0, V(i,5) # (i, 7).
Each element x; € D;; is an input sample vector with g >
1 features. In a typical learning algorithm, we use (x4, yq) to
express the data sample d, where y4 € R is the output (label)
for the sample x4.

Remark 1: In general, it is possible for each UE to forward
its local model to more than one FSs to reduce the UL
communication delay. However, this will likely lead to a
case where some UEs may not be willing to share their
proprietary information (i.e., computational capability and
battery level) to strange FSs that will be used to optimize
system performance. In the proposed scheme, FS i can be seen
as a trusted fog server to a group of J; UEs based on their
prior agreement, which further alleviates privacy concerns
of data sharing. In many FL applications (e.g., healthcare
industry, FinTech, insurance sector and IoT), FSs are often
deployed by private organizations to keep their privacy and
data preserved.

B. Federated Learning Model

Definition 1: Throughout the paper, the model produced
by FSs and UEs is referred to as “local aggregation model”
and “local model,” respectively, while that averaged at CS is
called “global model.”

1) Local Loss Function: Following the commonly used
FL framework [4], [5], the main goal is to jointly learn the
global model parameter w € RY (e.g., a neural network or
support vector machine [23], [41]) that produces the output
ya given the input sample x4 through the local loss function
f(wW,x4,y4) [4]. On the local data set, the loss function at UE
(i,4) can be generally defined as

Fij(w|Dy;) £ % > F(w,Xa, ya)- (1)
Y deDij
2) The Federated Learning Problem: Since the overall data
distributions on UEs are unknown, we consider the empirical
loss function across the entire network data set D = U; ;D;;,
defined as
A ZieI Ejem Fij(w|Dij)

F(w|D) 2 . . @)
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The aim of the common FL algorithms is to find the optimal
model w* that minimizes the global loss value of the following
optimization problem:
w" = arg v{,%lugq F(w|D). 3)
To achieve this in a distributed fashion, problem (3) is sepa-
rately decomposed into J independent sub-problems that can
be solved locally at UEs. Here, we directly adopt FedAvg [5]
which iteratively minimizes the local loss (2) using gradient
descent technique before communicating with CS for global
update. The key steps of FedAvg training procedure used
for the considered fog-cloud system can be summarized as
follows:
1) Global model downloading: At the start of global round
g, CS broadcasts the latest global model w9 to all FSs,
and then FS 7 broadcasts w9 to J; UEs, Vi € 7.
2) Local training update: UE (i,j) sets w),, = w?
and then updates the local parameters for L > 1 local
iterations as

w1 = Wi — 0V E; (W | Dij),
0=0,1,...,L -1 4)

where n9 > 0 is the step size (learning rate), which is
often decreased over time.

3) Local model uploading: UE (i, j) with j € J; sends
w; ; back to FS i, Vi € Z, and then FS ¢ forwards w{, ;
to CS for averaging.

4) Global training update at CS: CS performs global
training update as

o Dier Ejem ij,L

= 7 . 5)

5) Set g := g + 1 and repeat Steps 1-4 until convergence.

w9l

Compared to prior works [19]-[24], one of the key chal-
lenges here is how FSs can efficiently convey trained local
models to CS while ensuring convergence. We note that
forwarding all local models from FSs to CS (e.g., [22], [37] in
the context of cell-free networks) will increase the backhaul
overhead traffic, which becomes prohibitive in a large-scale
system. The proposed approach for local aggregations will be
discussed in the sequel.

ITI. FedFog: PROPOSED FEDERATED LEARNING
ALGORITHM DESIGN

We first develop the FedFog algorithm (Section III-A) and
then provide a detailed convergence analysis (Section III-B).

A. Proposed FedFog Algorithm Design

Similar to the extension of FedAvg to the fog-cloud system
presented in Section II-B, the training procedure of the pro-
posed FedFog algorithm is detailed in Fig. 2. With the latest
global model w¥ at round g, UE (i, j) computes L gradient
updates on the local data. FSs aggregate the received local
gradient parameters, and then convey them to CS to update
the new global model w9t which is then sent back to UEs
through FSs to begin a new global round. The dimension of
learning parameter vectors is the same for every layer.



NGUYEN et al.: FedFog: NETWORK-AWARE OPTIMIZATION OF FL. OVER WIRELESS FOG-CLOUD SYSTEMS

Global model downloading

W = w9
0

_wd ___ 2

Gradient
updates

g
Aggregation Awj;
Awf = ZJE]i Ang

Local model uploading

Global fraining update

ZieI |
Jr

witl .— w9 — n9d

Fig. 2. One FedFog update between global rounds g and g + 1.

1) Local Gradient Update: In FedFog, UEs will send their
gradient parameters to FSs and CS, instead of the trained local
models in (4). When the amount of (local) training data is
large, it is often impractical for IoT UEs to compute local
updates with the full batch gradient using deterministic gra-
dient descent (DGD). Unlike DGD in [26], we use stochastic
gradient descent (SGD) method to compute the gradient on
mini-batches. Let B, , be the mini-batch with size B = |B
randomly sampled from D;j of UE (i,7) at the ¢-th local
iteration of round g. The local parameter estimates in (4) for
UE (4, ) is revised accordingly as

ngZLJ( ij, Z|B'L] Z)

(=0,1,...,L—1

(6)

g
Wi e+1- —W

where the stochastic gradient is computed by

Z V(W Xa,ya)- (D)

derJ .

VFZJ( ij, €|Bz]i

For unbiased estimate of gradient, the condition
E{VE;;(w], |BY; )} = VFij(w]; ,|Di;) should be satisfied.
In particular, the mini-batch for each UE changes for every
local iteration but its size is fixed during the whole training
process. The total stochastic gradient updates of UE (¢, ) at
round g is

Wzg] 2 Z VE;; (ij,ewfj,e) (®)

Lel

which also implies that wz L~ 1 i0o="" I Aw? i
2) Local Aggregation and Global Update: After L local
updates, FS ¢ will periodically aggregate gradient parameters

as:
Aw! =" N VE; (W IBL ) = > Awd. (9)

JET; LeL JET:

All FSs then send their aggregated gradient parameters to CS
for averaging (i.e., global training update), as commonly done:

9 Dier 2jeg, AW
K J
g Dier AW
=

Once w91 is calculated, it will be sent back to UEs to
start a new global round. The proposed FedFog algorithm is
summarized in Algorithm 1. We have the following remarks:

wItl .— w9 —

:Wg—n

(10)

o Similar to the literature on FL, our method does not
require UEs to transfer their raw data to FSs and CS,
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Algorithm 1 FedFog: Proposed Federated Learning for Fog-
Cloud Systems

1: Input: L, G, I, J;, and D;j, Vi, j
2: Initial parameters at CS: Initialize the global model w° and
learning rate n°

3:for g=0,1,...,G—1do

4:  CS broadcasts w¥ to all FSs

5. for i € T in parallel do

6: FS ¢ broadcasts w? to J; UEs

7: for j € J; in parallel do

8: Overwrite wY, , := w?

9: forZ—O,l,...7 —1do

10: UE (4, j) randomly samples a new mini- batch Bg ¢ With

size B and computes the gradient V (w7, Z|BZ i)

11: end for

12: UE (i,j) sends Aw{; £ 37, VFyj(wi, ,|B, ,) o FS i

13: end for

14: FS i aggregates all gradient parameters Aw{ :=

e Awfj and then forwards it to CS for averaging

15:  end for

16: CS performs global training update w9™' = w9 —
g Xicz Aw!

17: end for /
18: Output: Final global model w®

improving privacy of training data and eliminating com-
munication overhead.

o In the proposed FedFog, the main challenge is to compute
the global training update at CS, as given in (10).
In FL with one server and multiple UEs [19], [20],
[23], local models will be uploaded directly from UEs
to the server. This, however, is prohibitive in fog-cloud
systems, where CS is often located away from end UEs.
The reasons are two-fold: ¢) It may require extremely
high energy consumption of UEs to transmit their local
models via wireless links, even not possible to reach the
main server due to UEs’ limited-battery; 2) It may also
cause heavy-communication burdens and high-latency
communications due to a very large number of uploading
parameters and long-distance transmission. In addition,
if each FS naively forwards all received gradient parame-
ters to CS then it will induce very high network traffic,
especially with a large number of UEs. In this regard,
the local aggregation at FSs given in (9) will result in
a learning parameter vector with the same dimension
for every layer while still guaranteeing the theoretical
performance.

o In general, a very large value of L will cause the local
models to converge only to an optimal solution of their
local loss functions [10], while a very small value of L
will result in high communication costs. In this paper,
an appropriate value of L will be numerically evaluated,
and it is assumed to be predefined in our design.

o The optimal value G* of global rounds is generally
unknown in federated settings. In Section IV, we will
consider a stopping criteria based on gradient parameters
received at CS which will help not only reduce comple-
tion time but also save UEs’ energy consumption.
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B. Convergence Analysis

To facilitate the analysis, we make the following common
assumptions and additional definition to the loss function.

Assumption 1: For Fy;j(w), Vi € T and j € [J;, we assume
that: i) Fy;(w) is A-strongly convex, i.e. Fij(w) > Fi;(W)+
(VFy; (W), w—wW)+3|w—w|2,Yw, W; and ii) F;;(w) is pi-
smooth (u-Lipschitz gradient), i.e. |V F;;(w) — VF;(w)| <

Assumption 2 (Bounded variance): For any { € L and
g € G, the variance of the stochastic gradients at UE (Qi,j)
is bounded as: B{ ||V Fy;(w?, |Bf; ) =V Fy;(w, ,|Dij)|| "} <
v, Vi e, je T

Assumption 3: For any ¢ € L and g € G, let § be an upper
bound of the expected squared norm of stochastic gradients,
Le. E{HVF"] 't]Z zg@” }<52 VZGI‘]G‘]L
Assumption 1 is standard (see [9], [11], [19], [20], [35])
used for the squared-SVM, logistic regression, and softmax
classifier, while Assumptions 2 and 3 have been used in [9],
[35], [42] to quantify the sampling noise.

Definition 2: Let Assumption 1 hold. We quantify the het-
erogeneity of the data distribution between UE (i, j) and other
UEs by defining €;; = Fi;(w*|D;;) — F7, where I is the
minimum local loss of UE (i, 7). It is clear that e;; is finite for
strongly convex loss function, and €;; = 0 if data distribution
of clients are i.i.d.

We first introduce additional notation and then provide
key lemmas to support the proof of convergence. Moti-
vated by [35], [42], let We +1 be the average of one local
update from all UEs, ie., w{,, £ £, djed, (wfﬂ -
UgVFz]( i, Z|sz E)) For VF(W?) = % ZieI Zjej,;
VEJ( 7, €|B't] Z) we have Wngl = Wy — UgVF(V_Vz)
It is clear that w9t! = w9l vg smce it is accessible
to all UEs, but not for wg ,Vl. In what follows, we use
VF; (Wigj,e) and VF;;(w{ ) to denote VF;(w B 0)
and VF;(w? i o\ Dij ), respectively, for simplicity. It is clear
that VFj;(w? 5i0) = E{VE;(w], ,)}. We now provide some
intermediate results, whose proofs are given in Appendix A.

Lemma 1 (The Expected Upper Bound of the Variance of
the Stochastic Gradients): Let Assumption 2 hold. We have

{HZZ VFZJ zje) VFij(Wigj,z))HQ}

i€ jET:
2
< —ZH%;E“%, g, (1)

Lemma 2: Let Assumption 3 hold. The expected upper
bound of the divergence of {w L} is given as

Ve, g.

SE{ >3 |wi-

i€Z j€T;

1)Ln26%,

ij,zHQ} <(L-

(12)

Lemma 3: Let Assumptions 1-3 hold. From Definition 2
and if ng < 1/4p, the expected upper bound of I[-E{Hv’v?+1 —
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Fig. 3. Tllustration of the proposed scheme to support FedFog in one global
round over wireless fog-cloud systems.

w*||?} is given as

E{w{,, —w"[*}

< (1-0. 5Ang>E{llv‘v§’ —w*HQ} (13)
+ 150 + Z > E{(Fy(w*) - Fiy(w))} (14)
i€ jET:
where 0 £ (24 M4p)(L = 1)L + 45 Yier X je 7 V5 +

615 D ier > jeg, Eis-
Combining with the results from Lemmas 1-3, the convergence
of FedFog is stated in the following theorem.

Theorem 1: Let Assumptions 1-3 hold. Given the optimal
global model w*, Q° = IE{||W —w*||?}, and the diminishing
learning rate 1, = m, we can obtain the expected
upper bound of FedFog after G global rounds as

maX{wQQO, &L;G@}
(G+v)?

2
where © = 2L252+(2+>\/4u)(L—1)L52+M
6Lt > s > je; €ij and P = m:aux{MT“7 4L}.

Proof: Please see Appendix B. |
It can be seen that with an appropriate diminishing learning
rate, the optimal global model is obtained after a sufficient
large number of global rounds, i.e., GlilnooE{HwG —w*||?}

E{|lw® — w"|?} < (15)

+

lim & — 0.

730Flexible User Aggregation: To reduce completion time,
it is also of practical interest to perform a flexible user aggre-
gation which allows fewer UEs to participate in the training
process in each round. The convergence of FedAvg with partial
user participation has been studied in [35]. The large variance
due to non-i.i.d. data can be controlled by fine-tuned learning
rates. We will detail the flexible aggregation strategy over
wireless fog-cloud systems in Section IV-D.

IV. NETWORK-AWARE OPTIMIZATION OF FedFog OVER
WIRELESS FOG-CLOUD SYSTEMS

The proposed wireless fog-cloud scheme to support FedFog
consists of five main steps, as illustrated in Fig. 3. Com-
pared to traditional FL algorithms over wireless communica-
tions systems [19], [20], [23], [24], the additional steps of
FedFog’s performance optimization (Step 1), model down-
loading/uploading between CS and FSs (mini-steps S2-1 and
S4-3), and aggregation of local models at FSs (mini-step S4-2)
are added to enable FedFog over wireless fog-cloud systems.
Unlike [19], [20], [24], the resource allocation algorithm (S1)
is done in each round since the future training loss has not
been revealed.
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A. Network and Computation Costs Model

In this section, we focus on minimizing the completion time
of FedFog and the global loss in (3). The communication delay
between FSs (or BSs) and CS (i.e., S2-1 and S4-3) to exchange
a single model update in both DL and UL is neglected since
in many practical networks, they can be connected through
backhaul links with sufficiently large capacities (i.e., high-
speed optical ones). For example, advanced optical fiber is
considered as the most viable solution to meet the extremely
low latency requirements of backhaul links between FSs and
CS, i.e., down to 150 microseconds [43]. In addition, FSs
and CS are often equipped with much higher computational
power than UEs to execute tasks [44], [45]. Therefore, the
latency of execution time of the resource allocation algorithm
(S1), aggregate local models at FSs (S4-2) and global training
update at CS (S5) is ignored.

1) Communication Model: We assume that BS ¢ € 7
(installed FS 7) is equipped with K, antennas to serve .J;
single-antenna UEs via a shared wireless medium. Let us
denote by hii(g) € CK*! and hij(g) € CK*! the
channel (column) vectors between BS ¢ and UE (i,7) in
downlink (DL) and uplink (UL), respectively. The channel
vector h¥;(g) with z € {d1,ul} is modeled as h{;(g) =
Vij (g)ﬁfj (9), which accounts for both the effects of
large-scale fading ¢;;(g) (e.g., path loss and shadowing) with
a low degree of mobility and small-scale fading ij (g) ~
CN(0,Ig,) and remains unchanged during round g, but
changes independently from one round to another. Let W4,
WU, and Ny be the DL and UL system bandwidths (Hz), and
noise power spectral density (dBm/Hz) at receivers, respec-
tively. The communication delay of UL can be predominant
over DL since BSs are typically equipped with much higher
power budget than UEs as well as they have high bandwidth
used for data broadcasting. Therefore, we allocate the DL
bandwidth equally to BS i as W = WX/ Vi € 7.
Adopting frequency-division multiple access (FDMA) for UL
wireless links from UEs to BSs, we denote the UL bandwidth
allocated to UE (4,7) at round g by [3;;(g)W™, satisfying
>ier 2ujes Bij(g) < 1,Vg. Under FDMA, the optimal
receiver (i.e., maximum ratio combining, h¥ /||h||) is used
for the UL transmission. Let S4; and S,; denote the data size
(in bits) of the updated parameters in DL and UL, respectively.
In this paper, we have Sg; < Sy since UEs are required
to additionally send the local loss value to CS to design a
stopping criteria.

Each BS ¢ € 7 broadcasts the latest global model to all J;
UEs using physical-layer multicasting, where the broadcasting
transmission rate of each BS is simply determined by its
slowest user [46]. The DL achievable rate (a lower bound on
the ergodic rate) in bits/s of UE (i,5) to download the latest
global model from BS i at round g can be computed as':

rf}(g) =wH 1og(1 + ]IIElgISNRg;(g)) (16)
where the signal-to-noise ratio (SNR) is SNR{j(g) =

PP E{||h{; (9) )17} PP Kipii(9)
W N, WIN,

, and P/"®* denotes the

'A more sophisticated beamformer is beyond the scope of this paper.
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maximum transmit power at BS 7. Here, we consider a worst-
case SNR against the noise power, i.e., W Ny < WN,.
The DL communication delay of UE (i, ) at round g is

Sdl
t 9 =
Y it (9)
which is the same for all UE (i,j) associated with BS

i. Similarly, the UL communication delay for UE (i,7) to
transmit the trained parameters to BS ¢ using FDMA is

a7

Sa
£7(g) = =
Y i (9)

with 1 (g) = Bi;(9)W™ log(1 4+ SNRY} (9))  (18)

where SNRIZ-‘;L (9) = Pij (f/[)/i(lz;\i;] (9)
power coefficient of UE (¢, j) during the local model upload-
ing phase, subject to the power constraint p;;(g) < P>

2) Computation and Energy Consumption Models at UEs:
Denote by c¢;; the number of CPU cycles required for exe-
cuting 1 data bit of UE (i, j), which assumes to be known a
prior by an offline measurement [47]. Let f;;(g) be the CPU
clock speed of UE (i,7), which can be chosen in the range
[fi‘;?in,fi‘;?ax]. Then, the computation delay for local training
updates at UE (i, j) over L local iterations at round g can be
expressed as

, and p;;(g) is the transmit

ci;Sp
fij(g)
where Sp denotes the mini-batch size.

The total energy consumed by UE (4, 7) at round ¢ can be
formulated as:

tiy(9) =L

ij

19)

ul,co 91
Eij(9) = pij(9)ti; " (9) + L7 eisSpfii(9) - (20)
—_—
Eg2(9) E(g)

where Efjf’(g) is the energy consumption required to transmit
the trained local model via the UL, and Ef7(g) is the energy
consumed for local executions; The constant 6, /2 represents
the average switched capacitance and the average activity
factor of UE (i, j) [48], [49].

B. Network-Aware Optimization Problem

We assume that UEs communicate asynchronously with
BSs [23], [24]. The delay of one global round (say, round
g) of FedFog is

T(g) = rgff{t?;’co(g) +EP(g) +45C(9)}. @D

The completion time for implementing FedFog over G global
rounds is thus 7% = 3  ;7T(g). The simplest way to
compute 7' is to set a sufficiently large value of G [19], [23],
[24], which ensures the convergence of FedFog. However, such
a solution may require redundant transmissions of training
models between UEs and CS, resulting in an extra cost.
Therefore, it is necessary to design a stopping criteria to output
an optimal value G* < G, whigh helps to achieve a lower
communication cost Ty = EgG:O_ "T(g). Inspired by [25],
we solve (3) by FedFog, taking into account the iterative costs.
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1) Cost Function and Performance Measure: The general
cost function should capture both the global loss function and
the completion time, which are two prime objectives in FL
algorithms, to provide a more precise measurement on the
system performance. We first introduce a cost function over
G global rounds based on the multi-objective optimization
method [50]:

deg T(g)
Th

+(1-a) (22)
where o € [0, 1] is the priority parameter. In addition,
Fy > 0 and Ty > 0 denote the references of the loss value and
the completion time, respectively, which are used to deal with
the different dimensions of the two quantities. We can see that
minimizing both the global loss function and the completion
time are conflicting. In particular, the lower the completion
time, the higher the global loss, resulting in low accuracy
of the learning model. Therefore, the priority parameter «
is imposed to create a trade-off between the two objective
functions. The higher the value of «, the higher the completion
time that the FedFog is willing to spend to achieve a better
accuracy of the learning model.

Remark 2: We note that minimizing the cost function C(G)
requires complete information about the network across G
global rounds, which is obviously unaffordable in hierarchi-
cal FL-supported wireless fog-cloud networks. In particular,
to compute the cost function C(G) in (22) over G global
rounds in an offline manner, we need to have the sequences
{F(w9)}vy and {T(g)}vy in advance, which is unrealistic
since the future values at round g + 1 (i.e., F(w9tl) and
T(g + 1)) are not revealed at the beginning of round g. This
calls for an alternating procedure, solely based on the network
information in each global round. The training time will be
accumulated after each global round.

Based on the above discussions, we consider the following
minimization problem of joint learning and communication at
round g¢:

F g 9/7 T /

minimize C(g) £ (w?) +(1—a)=L=2 ) (23a)

w,p(9), Fy T

£(9).8(9)

st Eij(g) <E™>, Viel,je, (23b)
SNR!}(g) > SNR™™, Vi€ I,j e T, (23¢)
pij(g) < P™, Vi€l je T, (23d)
i < fi;(g) <™, Vieljed, (23e)
SN Big) <1 (23f)

€L jeT;

where p(g) = {pij(9)}vij» £(9) = {fij(9)}vi,; and B(g) =
{Bij(g)}vi, ;. Constraints (23b) and (23c) indicate the max-
imum energy consumption requirement Emax and the mini-
mum SNR requirement SNR™™ for performing one round of
FedFog, respectively. As discussed previously, (23d), (23¢) and
(23f) are the transmit power, CPU-frequency and bandwidth
constraints for UE (i, j), respectively.

We can see that it is not possible to minimize the two
quantities in (23a) simultaneously since they are optimized on
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different time slots. Intuitively, problem (23) can be decom-
posed into two sub-problems at round g as follows:

in F(w|D
Wil FOIP)

(24
which is the FL problem solved by Algorithm 1, solely based
on the UEs’ local datasets, and

minimize C(g)]| s.t. (23b) — (23f)

p(9),£(9).8(9)

which is the resource allocation sub-problem of joint com-
putation and communication resources solved at CS for a
given F'(wY) obtained in the last global round. We note that
minimizing the cost function C(g) in (25) is equivalent to
minimizing the delay of one global round, i.e. T'(g), since the
total delay of the previous round is already revealed at round

g.

(25)

C. Proposed Path-Following Algorithm to Solve (25)

In what follows, we treat the loss function F(w9Y) as a
constant and rewrite (23a) equivalently as

clo) = 1- T2 + ()

(26)

>0, T

where C(g) = a%‘zgu-(l—a) 7
at round g since ng_:lo T(g') is already computed in the
previous rounds.

Problem (25) is nonconvex due to the non-concavity of
(23a) and non-convexity of (23b). By introducing new vari-
ables t(g) and 7(g) = {7;;(9)}vi.;» problem (25) is rewritten
as

is also a constant

L tlg) | A
minimize C(g) 2 (1 — a)=22 +C 27a
p(9).£(9).8(9) (9) = ) To () 70
t(9).7(9)
st t800(g) + LS8 L S <y v
K fij(9)  7ij(g) — ’ s
(27b)
7"‘;]-1(9) >1(9), Yiel, je T, (27¢)

Sulp” (9) _‘_LﬂcijSBfin(g) < EMEVLL G,

Tij(g) 2
(27d)
. WulNO o
2i(g) > SNR™R 0y s 27
pij(9) Kipglg) (27e)
(23d), (23e), (23f) (27f)

where (27d) and (27e) are transformed from (23b) and (23c),
respectively. The equivalence between (25) and (27) is due
to the fact that constraints (27b) and (27c¢) must hold with
equality at optimum for at least some of the slowest UEs.
In problem (27), the nonconvex parts include (27¢) and (27d),
which can be convexified by IA framework [39].

Let us treat (27c) first. We make the variable change

- 1
Bij(g) = 5—@ > 1,Vi, j to equivalently rewrite (27¢) as
ij
1 1 7i5(9)
—log(l 4+ ——) > 2= 28a
e ) B T ) = s
WuNy = wij(g)
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where B(g) £ {0ij(9)}vi; and w(g) £ {wij(g)}vi, are
newly introduced variables. Constraint (28) is convex and can
be cast into a second-order cone (SOC) one. In (28a), the
function = ( log( o 1( )) is convex which can be verified
by checknig the Hessian matrix. Applying the inequality [51,
Appendix A], we iteratively convexify constraint (28a) at
iteration x + 1 as
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Algorithm 2 Proposed Path-Following Procedure for Solving

(25)

Initialization: et k := 0 and choose initial feasible values for
P (g),B ( ), 7@ (g),w®(g)) to constraints in (31)

1: repeat

2:  Solve (31) to obtain the optimal solutions

(P*(9),£*(9),8 (9), " (9), 7" (9),w" (9))

K H(r+1) K K
3 Update  (p"T(g), 8" “(9), 7"V (9).w "V (g)) =
gp*(g)ﬁ (9),7(9),w"(9))
4: etk:=r+1
5: until Convergence

a

Output: The optimal solutions (p*(9),£"(9),B"(g9)) where
Bii(g) = 1/Bi;(9),Vi, j

ul, 2 2
R (Bis(9),wig(9)) 2 alf) = b wis(g) — i Bi;(9)
Tij g . .
> I/{/(“l)’ VieZ,jeJi (29
here a{") £ 2- 7
where aj =) ( (0] ( ) /6EJ)(9)(WL;)(9)+1)
() & < ) A& log(1
i [3(”(9)%7)(9)(WE7>(9)+1) and i (ﬂ“‘)( e log (1 +

%()) are positive constants. Here 51(3)( ) and w( )( )

are the feasible points of (;(g) and w;;(g) obtained
at iteration r, respectively. It is clear that the func-
tion Rul’(”)(ﬁm( ),wi;(g)) is concave lower bound of

i3 (9)
i ég) log(l—i—w ()) Next, applying [51, Eq. (B.1)] to ’;ij(g)
in (27d) yields

Su1 1 2 P (9)
P N +—
2 ( D@ ul9) 2m<g)—n§f"<g>)

0;
+L ;J CUSBfQ( ) < gmax7

which is the convex constraint.
Bearing all the above in mind, we solve the following inner
convex approximate program at iteration x + 1:

Viel, jeJ; (30)

minimize  C(g) £ (1 —a)t( 9) +C(g) (31a)
p(9),£(9).8(9) T
t(g9),7(9),w(9)
1, SB Sul ..
s.t. tdlw Y el <t(g), Vi,j,
(9) fij(9)  7ii(9) (9)
(31b)
0. 5 p” —l—w”
WulN o
H“ 0 pz] Wz](g)) Vi, 7,
z‘sz
(31¢)
SN (31d)
€T jET; ﬁ”
(23d), (23e), (27e), (29), (30) (3le)

where the SOC constraint (31c¢) is derived from (28). We suc-
cessively solve (31) and update the optimization variables
(p(”‘)(g),,@(n)(g),T("‘)(g),w("‘)(g)) until convergence. The
proposed path-following procedure to solve (25) is sum-
marized in Algorithm 2. The initial feasible values for
(p(o)(g),B(o) (9), 79 (g),w®(g)) are required for starting
the IA procedure. We first randomly generate pgg)(g) €

min ul max . . 2(0
[SNR KW%A([g),P ], Vi, j al(loc)i then set 67;(]‘)(9) =
0 " 3 (9 Kiwij(9) 0 —
J, n(])(g) = Lwlog(1l + %)a wz(j)(g) -
WulNO

———0— Vi, j.
PE?)(Q)Kiwij(g)7 bJ

Convergence and complexity analysis: The path-following
Algorithm 2 is based on the TA framework [39], where
all approximate functions in (31) are satisfied IA properties
in [52]. In particular, Algorithm 2 produces better solutions
after each iteration, which converge to at least a local optimal
solution when k — oo, satisfying the Karush-Kuhn-Tucker
(KKT) conditions [39, Theorem 1]. Problem (31) includes
7.J 41 linear and conic constraints and 5.J + 1 scalar decision
variables. By a general interior-point method [53, Chapter 6],
the worst-case of per-iteration complexity of Algorithm 2 is

O(VTI(5])%).

D. Proposed Network-Aware Optimization Algorithms

We note that (31) is a discrete convex program of (25)
in each global round ¢ € §. Towards a practical appli-
cation, we use the theoretical results above to develop the
network-aware optimization algorithms in distributed environ-
ments due to the causal setting.

Assumption 4: In addition to Assumption 1, we further
assume that the local loss function F;;(w), Vi € T and j € J;
is A-strongly convex and non-increasing.

Proposition 1: Let Assumption 4 hold. Since the cost

Sunction C(g) is a discrete convex function, there always
exists G* > 0 as a minimizer of the problem: G* =
argming g C(g), where C(G* — 1) > C(G*) and C(G*) <
C(G* +1).
From Assumption 4, we can show that the global loss function
F(w?Y) is non-increasing while the completion time function
> 9eG T'(g) is non-decreasing over time. It implies that we can
stop FedFog at round G* once the stopping condition C(G*)—
C(G* — 1) > 0 is met, without incurring in extra costs. The
optimal solution G* can be found by tracking the sign of
two consecutive values of the cost function C'(g). However,
the non-increasing sequence of the global loss function may
not hold true in all global rounds due to non-i.i.d. data and
stochastic noise of the random sampling of mini-batchs. In this
case, a few more rounds are needed to avoid an improper early
convergence of FedFog. This phenomenon will be empirically
justified by numerical results.

1) Full User Aggregation: The complete algorithm with the
full user aggregation is summarized in Algorithm 3, where
€ in Step 18 is a small positive constant. In Step 19, the
condition g > G is added to guarantee a comparable accuracy
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Algorithm 3 Proposed FedFog-Based Network-Aware Opti-

mization Algorithm With Full User Aggregation

I: Input: L, G, I, J;, Dij, k, B, E™, ¢, SNR™™ P7** £ and
fmax V,L ]

2: Inltlal parameters at CS: Initialize w°, °, and set G* =

G,g=

0
3: while ¢ < G —1do
4:  Run Algorithm 2 and then broadcast the optimal solutions to
UEs using dedicated control channel //(S1)
CS broadcasts w? to all FSs //(S2-1)
for « € 7 in parallel do
FS ¢ broadcasts w¥ to J; UEs //(S2-2)
for j € J; in parallel do
Overwrite wy, , := w?
foré_(),l,...7 —1do
UE (4, j) randomly samples a new mini-batch Bg ¢ With
size B; and computes VF;(wy; ,[BY; ) and FZJ (w?)
11(S3)
12: end for
13: UE (i,j) sends Aw{, £
Fij(w?) to FS 7 //(S4-1)
14: end for
15: FS i calculates w{ = >, Aw}

7, and F;(w9) =
ieq Fij(w?), and then forwards them to CS /1(S4-2 &
S4-3)

16:  end for

17:  CS performs global training update w9 :=
n? Yicz Aw!
T

—oXRI

—_—

ZZEL: VF”( ij, Z|B7,g l) and

w9 —

; and calculates the cost function C(g) =

(w9 ,

aZiez i) (g )—Zq =) 55
18: if C(g9) — C(g — 1) > € then
19: if (k>k && g > G) then
20: Set G* = g — k; Break and go to step 28
21: end if
22: Setk:=k+1
23:  else
24: k<0
25:  end if

26: Setg:=g+1
27: end while

28: Output: w*, G*, F(w®") and T3 = ¢ FF+1 7(g)

g=0

of the learning model, where G is the required minimum
number of global rounds. The actual value of G may depend
on the specific ML applications, FL algorithms and datasets.
The large variance of the global loss value, which is due to
non-i.i.d. data and stochastic noise of the random sampling
of mini-batchs, may lead to an improper early stop in Step
18. To tackle this issue, CS may wait for some more global
rounds to ensure the convergence of FedFog. If the condition
C(g) — C(g — 1) > € is met for k > 0 consecutive rounds,
we terminate Algorithm 3. We can see that to calculate the last
cost value, an additional round of global and local updates is
carried out at the end. As a result, the effective completion
time for implementing FedFog in Algorithm 3 is given as
Ts =S5 ().

2) Flexible User Aggregation: We can see that in Algo-
rithm 3, CS needs to wait for the slowest UEs (i.e., due to
low computing capability, low battery level and unfavorable
links) to perform the global training update in each round,
which may result in higher training delay (so-called “straggler
effect”). As shown in [35], each UE is only required to
activate sometime but still guarantees the convergence of
FedAvg. Thus, our next endeavor is to propose a flexible user
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aggregation to reduce completion time. The key idea is to train
strong UEs first to obtain a certain accuracy level, and then
more UEs will be allowed to join the training process until
convergence.

To achieve the above goal, we relax problem (27) as

L. A Sier 2 tij(g) =
minimize C(g) £ (1 — o) =222l W2 4 O 32a
p(9):£(9),8(9) (9) = ) JTo (9) (322)

t(g9),7(9)

st 157°0(g) + LERE 4 Sus < t5(g), Vi, j, (32b)

(23d), (23e), (23f), (27¢), (27d), (27e) (32¢)

where t;;(g) is considered as a soft-latency of UE (i, ;) and
t(9) £ {tij(9)}vi,. For the objective (32a), CS will favor
UEs with better conditions by allocating more resources to
them, and thus achieving lower latency than other UEs. This
problem can be directly solved by Algorithm 2. Let S(g) be
the set of S(g) = |S(g)| UEs selected at round g. Given the
optimal solution {#};(0) }v;,; obtained from solving (32) at the
first round, CS determines a time threshold 7 (0) := 7, to
allow the first S(0) = Jin responded UEs (i.e., Jmin UEs
with the lowest delay) to participate in global updates, given
as

T(0) := Tmin = max_{t;;(0)}

33
(4,7)€5(0) G

where Jpin € (0, J] should be large enough to guarantee the
quality of learning. CS then synchronizes 7,;, to all FSs, and
any UE (4, j) with higher latency (i.e., ;;(0) > Zwin, Vi, J)
will be ignored from the local aggregations at FSs. When the
certain accuracy level is obtained at round g, i.e.,

Z AW”’<€

(4,7)€S(g

(34)

I5%

we increase the time threshold ’T(g) by A7 to allow weaker
UEs to join the global update, ie., S(g) := S(g — 1) U
{UE (i,7)[ti;(9) < T(g)}, where £ is a small positive
constant. This procedure is repeated untill all UEs are joined
the training process. We summarize the complete procedure
of flexible user aggregation in Algorithm 4.

V. NUMERICAL RESULTS

In this section, we numerically evaluate our proposal algo-
rithms in several scenarios. We first present the simulation
setup in Section V-A and validate the performance of FedFog
in Section V-B. The performance comparison of Algorithms 3
and 4 over a wireless fog-cloud network will be provided in
Section V-C.

A. Simulation Setup

1) ML Model and Data Samples: We consider an image
classification task using a multinomial logistic regression with
a convex loss function. The regularization parameter is fixed
to 10~*. We evaluate FedFog by training neural networks on
MNIST and CIFAR-10 datasets.

o MNIST [54] contains 70K images of hand-written digits

0-9 with 60K training samples and 10K testing samples.
We train a fully-connected Neural Network (FCNN)
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Algorithm 4 Proposed FedFog-Based Network-Aware Opti-
mization Algorithm With Flexible User Aggregation
I: Input: L, G, I, Ji, Dij, Jmin, k, B, e,&, AT, E™> SNR™™",
PR 50, and 75 Vi, j R
2: Initial parameters at CS: Initialize w°, n°, and set G* = G, g =
0

3: while ¢ <G —1 do
4:  Run Algorithm 2 and then broadcast the optimal solutions to
UEs using dedicated control channel //(S1)
5. if g =0 then
6: Calculate 7(0) := Zmin and S(0) = {UE (4, )[t:;(0) <
Tmin, Vi, 7} in (33); Break and go to step 10
7. else if the condition (34) is met then

8: Update 7 (g) :=7 (g — 1)+ AT and S(g) :=S(g— 1)U
{UE (i, )lts; (9) < T(9)}

9: end if

10:  CS broadcasts w? to all FSs //(S2-1)

11:  for ¢ € T in parallel do

12: FS i broadcasts w¥ to J; UEs //(S2-2)

13: for j € J; in parallel do

14: Overwrite w;  := w?

15: foré—O,l,...,Lfldo

16: UE (i, j) randomly samples a new mini-batch By, , with
size B; and computes V(w7 ,[BY; ) and Fi;(w?)
/1(S3)

17: end for

18: UE (i,j) sends Aw{, £ 37, VF;(w! B ,) and

Fij(w?) to FS i //(S4 1)
19: end for
20: FS i calculates wi = 37, . Aw{; and Fi(w?) :=
Z e 7.(¢) Fis(W?) where .Z-(g) 1% the subset of UEs with
)

( < 7(g), and then forwards them to CS //(S4-2 &
4—3
21:  end for
22: CS perforl?s global training update w9t! w? —
n? %A)w"; and calculates the cost function C(g) =
; 5 (w 9, _,T("
aZie B 4 (1 - ) = (SS)
23 if (C(g)—Clg—1) > € && S( ) = J) then
24: if (k> Fk && g > G) then
25: Set G* = g — k; Break and go to step 33
26: end if
27: Setk:=k+1
28: else
29: k<0
30:  end if

31: Setg:=g+1
32: end while

33: Output: w*, G*, F(w®") and 7% = ZG FRHLT(g)

with a single hidden layer using ReLLU activation and
a softmax layer at the end. There are (784 4 1) x 10 =
7,850 optimized parameters, where the input and output
sizes of the NN model are 28 x 28 = 784 and 10,
respectively. The initial learning rate is set to n° = 0.001,
which is decayed after every global round as 9 = 1_7(’)0”.
o CIFAR-10 [55] consists of 60K colour images in 10 dif-
ferent classes (e.g., airplanes, cars, birds, etc.) with 50K
training images and 10K testing images, where each
image in CIFAR-10 is 32 x 32 colour image. We train a
convolutional NN (CNN) which has two 3 x 3 convolution
layers followed by 2 x 2 maxPooling, one fully-connected
layer (128 units) using ReLU activation and a softmax at
the output layer. The learning rate is set to 79 = 1.8755_(,
with 79 = 0.001.
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Fig. 4. A system topology with / = 5 FSs, J = 100 UEs and J; = 20
UEs, Vi.
TABLE 11
SIMULATION PARAMETERS
Parameter ‘ Value
System bandwidth, W = W% = Wit 10 MHz
Noise power spectral density, Ny -174dBm/Hz
SNR threshold, SNR™" 1 dB
Number of antennas at BS 7, K;, Vi 8
Power budget at FSs, P/"**, Vi 40 dBm
Effective capacitance coefficient, 6;;/2, Vi, j 10-28
Priority parameter, « 0.7
Minimum number of global rounds for MNIST, & 250
Minimum number of global rounds for CIFAR-10, G 600
Energy consumption requirement, £™**, for MNIST 0.01 Joule
Energy consumption requirement, £™**, for CIFAR-10 | 1 Joule
Ref. loss and completion time, (Fy, Tp), for MNIST (0.1,100)
Ref. loss and completion time, (Fy, Tp), for CIFAR-10 | (1,1000)
Threshold for stopping condition, & 5

2) Data Distribution: Due to the limited number of samples
on datasets, we consider 100 UEs concurrently participating
in the training process. There are 5 BSs (or FSs), each
has 20 UEs. We consider non-i.i.d. distributed data across the
network, where each UE has the same number of data samples
but contains only one of the ten classes. We generate an initial
global model as w” = 0.

3) Simulation Parameters and Benchmark Schemes Over
Wireless Fog-Cloud Systems: We consider a system topology
shown in Fig. 4, where 5 BSs and 100 UEs are located within
a circle of 1-km radius. The locations of BSs are fixed during
the simulation. The large-scale fading (in dB) is generated as
vij(g) = —103.8 — 20.91og(d;;(g)), where d;;(g) (in km)
is the distance between BS 7 and UE (7, 7) at round g [23].
By the IEEE 754-2008 standard, we use 32-bit float type to
store model weights and the local loss value. To illustrate
the heterogeneity of UEs, Pj7** is uniformly distributed
in [10, 23] dBm, ¢;; is uniformly distributed in [10, 20]
cycles/bits, f;7%* is uniformly distributed in (109, 3.107]
cycles/s and f‘;“n = 10 cycles/s. The other parameters are
specified in Table II, following [19], [20], [22], [23], [56].

We set Eqtiar.10 > Eniaist since the batch size of CIFAR-10
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is much larger than that of MNIST. In most cases, Algorithm 2
converges in about 5 iterations. The results are averaged over
100 simulation trials.

For comparison purpose, we consider the following three

Global loss

Testing accuracy

Global loss

Testing accuracy

Effect of mini-batch size B on the convergence of FedFog, with
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Fig. 6. Effect of different numbers of local iterations L on the convergence
of FedFog, with B = 20.

o “Equal Bandwidth (EB):” Each UE (¢, j) at round g is
allocated the fixed portion of bandwidth as §;;(g) =
1/J,¥i,j in uplink.

o “Fixed Resource Allocation (FRA):” Since the com-
munication delay is often dominant computation delay,
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we assume that UE (¢,7) uses its maximum transmit
power (i.e., pij(g) = P}j™, Vi, j,g), and the frequency
fij(g) is then computed by (23b) and (23e).
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Fig. 9. Trade-off between completion time and maximum energy consump-
tion requirement.

o “Sampling scheme [23], [35]:” At each global round, only
a subset J(g) is selected at random to participate in the
training process. This scheme allows more bandwidth to
be allocated to UEs in the uplink links.

B. Effect of Hyperparameters on FedFog (Algorithm 1)

In Fig. 5, we investigate the effect of mini-batch size B €
{10, 20,50} on the performance of FedFog for both MNIST
and CIFAR-10 datasets. It can be observed that increasing the
size of the mini-batch results in a better convergence rate of
FedFog since more data are trained in each iteration. However,
a very large mini-batch size (e.g., B = 50) slows down the
convergence rate of FedFog as it requires more local iterations
for the local model training to obtain the same accuracy of the
learning model with the medium mini-batch size (e.g., B =
20) in each round. In addition, large mini-batch sizes will
consume more power and require higher computation at local
UEs.

In wireless networks, the communication delay can domi-
nate computation delay, and therefore UEs tends to perform
more local updates before sending them to CS, resulting less
global model updates. In Fig. 6, we show the convergence
rate of FedFog with different values of local iterations L
and B 20. In all settings, the larger L has a positive
impact of the convergence speed of FedFog; however, a very
large number of local iterations also lead to high computation
latency and divergent convergence. Hence, it is beneficial
to choose the appropriate values of L and B, which not
only boosts the convergence speed but also balances trade-off
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Fig. 10. Number of received gradients for flexible user aggregation-based
schemes, with J,;, = 20.

between computations and communications. In the following
simulations, we set B = 20 and L = 20.

C. Numerical Results for FedFog Over Wireless Fog-Cloud
Systems (Algorithms 3 and 4)

Fig. 7 depicts the average C(G) performances of Algo-
rithm 3 with different values of the priority parameter a.
As can be seen from this figure that, with small value of
a, Algorithm 3 obtains a minimum cost function at small
value of GG, which may lead to an improper early termination.
The reason is that, when « is small, the completion time,
which is an increasing function of G, takes more effect on
the cost function than the loss function. As expected, a larger
value of a provides a better balance between the accuracy of
the learning model and the running cost. Therefore, we set
a = 0.7 in the following results.

In Fig. 8, we show the performance comparison in terms of
completion times among the considered schemes versus the
number of global rounds. Clearly, Algorithm 3 outperforms
the baseline schemes in all ranges of GG, which is even deeper
when G is large. The EB, which fairly allocates the fixed
bandwidth to UEs (i.e., £;;(g) = 1/J, Vi, 4, g), provides the
worst performance as the bandwidth allocated to each UE
has a great impact on both UL and DL transmission latency,
leading to the serious straggler effects. These observations
demonstrate the effectiveness of the proposed Algorithm 3
by jointly optimizing the transmit power, CPU-frequency and
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Fig. 11. Performance comparison between Algorithm 4 and baseline schemes,
with Jinin = 20 and A7 = 0.15s.

bandwidth. We can also see that the completion time of
CIFAR-10 CNN is much higher than that of MNIST-FCNN
since the latter has larger sizes (in bits) of data and model
training than the former.

The impact of the maximum energy consumption require-
ment, £™** on the completion time is plotted in Fig. 9,
where we set k = 5 for the stopping condition. Increasing
the threshold £™#* results in lower completion times for all
schemes. This phenomenon is not surprising because with a
larger value of £™#*, more power and CPU-frequency of UEs
can be used for the global training update and local model
training subject to constraint (23b). Again, Algorithm 3 still
offers the best performance out of the schemes considered.

Fig. 10 characterizes the number of received gradients for
flexible user aggregation-based schemes. We note that it is
often not beneficial to completely satisfy the condition (34).
Therefore, weaker UEs are allowed to participate in global
updates earlier after a fixed number of global rounds, say
AG. Here we set AG = 50, which is numerically shown
to significantly accelerate the convergence rate of FedFog.
As can be seen in Fig. 10(a) that increasing A7 results in
higher number of received gradients. However, a large A7
(i.e., AT = 0.2s) will not only bring less benefit in terms of
the number of received gradients, but also lead to a higher
training time. In addition, the results in Fig. 10(b) show
that Algorithm 4 can boost the number of received gradients
compared to the baseline schemes with the same completion
time. This results in better model training, as demonstrated in
Fig. 11.
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Fig. 12.  Performance comparison between different schemes, with Jy,i, =
20, J(g) = 10,Vg and A7 = 0.15s.

Lastly, we compare the performance between the proposed
algorithms and the sampling scheme in Fig. 12, with J(g) =
10, Vg for the latter. As expected, Algorithm 4 requires much
less completion time in Fig. 12(a) while still achieving the
comparable accuracy of the learning model in Fig. 12(b),
compared to Algorithm 3. On the other hand, the sampling
scheme has the lowest completion time due to a small number
of UEs participated in the training process, but exhibiting a
much slower convergence speed than Algorithms 3 and 4.
In other words, Algorithm 4 offers a good balance between
the quality of learning model and the communication cost.

VI. CONCLUSION

In this paper, we proposed the network-aware FL algorithm
for wireless fog-cloud systems, a novel methodology for opti-
mizing the distribution of ML tasks across users while tackling
inherent issues in fog-cloud scenarios. We characterized the
overall running cost of implementing the proposed FedFog
algorithm in discrete time intervals, taking into account the
effects of both computation and communication. The cost
function of the formulated problem captures the global loss
and overall cost in terms of the training time, which is
used to design the iteration-stopping criteria to produce a
desirable number of global rounds. The proposed scheme can
avoid the redundant cost with negligible negative impact on
the convergence rate and accuracy of the learning model.
We also developed a flexible user aggregation strategy to
mitigate the straggler effect, resulting in less completion
time of FedFog over wireless fog-cloud systems. Numerical
results with popular ML tasks were provided to validate the
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effectiveness of the network-aware FL algorithm compared to
existing baseline approaches. For future works, it would be
interesting to develop and implement prototypes to validate
the efficiency of FedFog in real-time environments.

APPENDIX A: PROOF OF LEMMAS 1-3
A. Proof of Lemma 1

Since the variances of the stochastic gradients of any two
UEs are independent, it follows that

{2 32 (Vs (wh) - VF 8 )]}

i€l jeJ;
QZZ {H VFU 'L]Z) VFU( 'L]Z))HQ}
i€l jeJ;
1
+_4 Z E{H(VFZ]( ’Lj e) VFZ]( ’Lj K))
(,5)#(,3")

(VFW( T VFi’j'(ngf,e))HQ}

= ﬁ Z Z ’ij (by Assumption 2).

€L j€T;

(A.1)

B. Proof of Lemma 2

From the definition of W{ there always exists ¢’ < ¢, that

satisfies £ — ¢/ < L — 1. Flrst it is true that [|[w] — w]; €||2:
H_(We W(e/) - (w] Wit Ww)” = HW/ - Ww”Q - 2<W§ -
Wi W, = Wi+ [w, = w||?. In addition, we have
(Wi —wi, Ziez Eje]i ij, 0 wi) = |w] - V_V?/”Q' Thus,
it follows that
1 _
SE{DD 3 Wi - wi I}
i€L jET;
1 1
= 230 S E{llwh, — wh P - SE(wE - i)
i€L jET;
1,
=72 S I3 VR g
€L jeT; t=l’
||Z S Sl
€T jET; t=0'
2 -1
1
< 7@ S SIS R )
€T jeT; t=l'
S Z Z ZHVFW wt ”
€T jET; t=L/
< (0= 0)Ly}s* < (L —1)Ln.s°
(dueto £ — ¢ < L —1). (A.2)

C. Proof of Lemma 3

Given WZJr1

i ZzEI E]EJL

*H2

= W] — nVF(w]) and VF(W]) =
VE;(w), ) =E{VF(w)}, it follows that

HW1€+1 -w
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= | W] —w* =g VE(W{) +ny(VF(W]) — VF(w{))||?
= |w{ —w* —n,VF(w))|?
2A
+ g |VE(W]) = VF(w{)|? (A3)

A

=B

since E{(w{ —w* —n,VF(w{),VF(w])—VF(w)))} = 0.
We first focus on the expected bound of A by rewriting it as:

A= ||W] — w2 —2n, (W] — w*, VF(W)))
L4, L4,
+IVEW)[?. (A4
£ A,

For As and from Assumption 1 on A-strongly convex, we have

A=~y 52 S

—w", VF;(w] i, o)

€T jET:
1 _
- _277ng Z<Wg w@’VF”( zﬂ»
iEIjE$
- 2779 Z Z ’L] L W*’ VFU (W:(L]],Z»
zEI JET:
1 _ _
< <20 (I = Wl P + IV Ey ()P
€L j€T;
n n * >‘ *
=2, (Fy (Wl ) = Fiy(w*) + 5wy, = w[[2)).

(A5)

For As and from Assumption 1 on p—smooth, we have

1 _
3= 773”32 Z VFij(W;(‘]j,z)HQ

1€ jeTi
1 _
= "332 Z HVF%‘J’(Wigj,e)HQ
€L jeT;
2um; _ .
< J . Z Z (Ej (W?j,é F’L]) (A6)
i€L jET;

Substituting (A.5) and (A.6) into (A.4), it follows that
A<(1-0, 5Ang>||v‘v2 - w?

+ (1 + Aigg) JZZHWK—WWIIH& (A7)
€T jET:
where we use the fact that —/\77gJ||wlM - wH? <
Mg (0.5 w) + w¥? = 3z Yieq W] — wi %),
IVE;(wi oIP < 2u(Fy(w);,) — Fj), and
Ay = Amig Yier Yjeq (Fu(Wh,) = Fj) -
2779% EieI Ejeji (Fij (ij,e) - Fij (W*))'

To bound A4, we define 7, = 27,(1 —
Ng < ﬁ. Thus, we have 7, €

2pung) and assume
[ng 2m,4) and hence

ZZF ZM

zEI JET:

+ 209~ ZZ i (W) = F5)

zEI JE€ET:

Ay = =2ny(1 = 2pmy) 5 ~ F})
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1730 (Bl ) = Fy(w)

zEI jEJL
=15 Y0 3 (Fy(w) - F)
zEI JET;
_ 1 _ _ .
< _Ugj Z Z (Fij(wigj,z) — Fij(w ))
i€l jeT;
1
+4/“7§j > ) e (by Definition 2).  (A.8)
i€L jET;
Further, it is noted that
1 — R *
_Z Z (Fw( f],z) — Fij(w >)
€T jET,;
1 n n — I — I *
=7 SO (Fy(wh )= Fy (W) +Fy(w]) — Fij(w")).
i€Z j€T;
(A.9)
Applying  Assumption 1 and |[[VFj;(w/ i D2 <
2u(Fi; (Wigj,e) - E*j) to (A.9), after some manipulations we
can obtain
Ay < fg(ngp — ZZF 7(*))
zEI JET:
1 _
F Y I R b Y Y
i€ jET; zEI JET:
(A.10)
Substituting (A.7) and (A.10) into (A.3), we have
Wi,y —w*||
< (1=0.5Mn,)[w] —w*|?
1 o
+020f + 255 DN (Fij(wt) = Fij(w))) (A1)

€L jeT:
due to 7, g 1/4p and ng(l ngu) < 2n4, where
(2+7/4 S
Of & LSS 1 Yjes W8 — WP + | VF(WY) -
VF(Wz)”Q + 605> et diea, 6” By Lemmas 1 and 2, the
expectation of QJ is Q) = E{QJ} = (2+\/4p) (L —1)L&*+

Yier 21637 v
— gt +6u3; Z'LEI Z]Eji Eij-

APPENDIX B: PROOF OF THEOREM 1

Similar to [35], [42], let us define QJ £ ||W{ — w*||? and

Q7 = E{QJ}. From (A.11), we have

L L-1

> Q! 1_05AngQg+ngZQQ

=1 -0

1 o
+2ngj DS (Fy(w*) = Fij(w)))  (B.1)
1€ jET;

where w{, is a minimizer of 5 3,7 >~ ;. Fy;(W{), leading
© dier e, E{F;;(w*) — Fi(wj,)} < 0. By Q9 =

5_0 QJ, we rewrite (B.1) as

QI < QY — 0.5\, Z Qé +n2Q (B.2)
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In addition, [|[w7,, — w*|| < [|W] — w*|| + ngHVF(V_V?)H
or [Woth —w|| < [[W — w*|| + 1y i HVF(Wk)H
As a result we can show that QJ < 0.5Q9"!

. Hence, (B.2) is rewritten as

72 (X0 IVEw))?
(140.25M,L)Q9 < @7

L-1
HOBNL(Y
773(29.

N
(B.3)

|VF(w

Assuming the learning rate 7, < 4/AL and taking the
expectation of both sides of (B.3), we have

Q< (1 M)Qg + 2 (289 + Q)

where &7 2 E{(X}5 ||VF( nNy <
LY 0 B Cier Ygeq, VES(WE)IPY < L26% by
Cauchy—Schwarz 1nequa11ty and Assumptlon 3,and Q9 = (2+

LY ez Xjieq Vi

MNAp)(L=1) L& == S0 D 4 6L L > dej, Eij.

We consider a diminishing learning rate n, = m
with ¢ = max{%, 4L} > 0, satisfying 171 < mm{%ﬂ, %}
By defining W9 £ max{¢?E{[|w® — w*|?}, 18 g@} for
© £ 2026 + (2 + A\/4p)(L — 1)L6> + —L RirSiea s ,
6uLlL ZZEI > je; €ij» we next will prove that Qg <
Wthh is done by induction. It follows that

16 AL L

(B.4)

(g+)? +1/1)

yg9+1 1— -~
= Mg +1+1) 8)(g+w)2
16 2
+(A(9+1+w)) ©
g+v—1L w9
T (gt -L) g+ +L)g+1+y
! 162@ duetol —L <0
T e 0 el -L<0)
1 162 Pgtl
ERvES TR A Al e e
(B.5)
where U9 £ max{¢?E{||w® — w*||?}, 1& (g+1)@}

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” /EEE Internet Things J., vol. 3, no. 6, pp. 854-864,
Dec. 2016.

[2] Cisco. (2019). Demystifying 5G in Industrial loT. [Online]. Available:
www.cisco.com/c/dam/en-us/solutions/iot/demystifying-5g-industrial-
iot.%pdf

[3] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204-2239,
Nov. 2019.

[4] J. Park et al., “Communication-efficient and distributed learning over
wireless networks: Principles and applications,” Proc. IEEE, vol. 109,
no. 5, pp. 796-819, May 2021.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat., Fort Lauderdale, FL, USA,
Apr. 2017, pp. 1273-1282.

[6] J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

8597

J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical SGD,” 2020,
arXiv:2010.12998.

P. Kairouz et al., “Advances and open problems in federated learning,”
2019, arXiv:1912.04977.

S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learn. Represent., 2019.

Y. Zhang, J. C. Duchi, and M. J. Wainwright, “Communication-efficient
algorithms for statistical optimization,” J. Mach. Learn. Res., vol. 14,
pp. 3321-3363, Nov. 2013.

S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 3,
pp. 1205-1221, Jun. 2019.

J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mech-
anism for reliable federated learning: A joint optimization approach
to combining reputation and contract theory,” IEEE Internet Things J.,
vol. 6, no. 6, pp. 10700-10714, Dec. 2019.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Privacy aware
learning,” J. ACM, vol. 61, pp. 1-57, Dec. 2014, doi: 10.1145/2666468.
H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning dif-
ferentially private recurrent language models,” 2017, arXiv:1710.06963.
T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation
in federated learning,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2020.

C. Xie, S. Koyejo, and I. Gupta. (2019). SLSGD: Secure and Effi-
cient Distributed on-Device Machine Learning. [Online]. Available:
https://128.84.21.199/abs/1903.06996v 1

H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 317-333, Jan. 2020.

S. Zheng, C. Shen, and X. Chen, “Design and analysis of uplink and
downlink communications for federated learning,” IEEE J. Sel. Areas
Commun., vol. 39, no. 7, pp. 2150-2167, Jul. 2021.

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269-283, Jan. 2021.

C. T. Dinh et al., “Federated learning over wireless networks: Con-
vergence analysis and resource allocation,” I[EEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398-409, Feb. 2021.

K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022-2035, Mar. 2020.

T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and
R. H. Middleton, “Cell-free massive MIMO for wireless federated learn-
ing,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6377-6392,
Oct. 2020.

V.-D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. Ottersten,
“Efficient federated learning algorithm for resource allocation in wireless
10T networks,” IEEE Internet Things J., vol. 8, no. 5, pp. 3394-3409,
Mar. 2021.

Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication net-
works,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935-1949,
Mar. 2021.

A. Mahmoudi, H. S. Ghadikolaei, and C. Fischione, “Cost-efficient
distributed optimization in machine learning over wireless net-
works,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020,
pp. 1-7.

L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1-6.

S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 41-47, Dec. 2020.

S. Hosseinalipour et al., “Multi-stage hybrid federated learning over
large-scale D2D-enabled fog networks,” 2020, arXiv:2007.09511.

R. Saha, S. Misra, and P. K. Deb, “FogFL: Fog-assisted federated
learning for resource-constrained 10T devices,” IEEE Internet Things
J., vol. 8, no. 10, pp. 8456-8463, May 2021.

Y. Tu, Y. Ruan, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog comput-
ing,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 2509-2518.


http://dx.doi.org/10.1145/2666468

8598

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21,

J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization for
efficient hierarchical federated learning in wireless edge networks,”
IEEE Trans. Parallel Distrib. Syst., early access, Nov. 30, 2022, doi:
10.1109/TPDS.2021.3131654.

S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical fed-
erated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6535-6548, Oct. 2020.

W. Wen, Z. Chen, H. H. Yang, W. Xia, and T. Q. S. Quek, “Joint
scheduling and resource allocation for hierarchical federated edge learn-
ing,” IEEE Trans. Wireless Commun., early access, Jan. 26, 2022, doi:
10.1109/TWC.2022.3144140.

C. Zhou, A. Fu, S. Yu, W. Yang, H. Wang, and Y. Zhang, “Privacy-
preserving federated learning in fog computing,” IEEE Internet Things
J., vol. 7, no. 11, pp. 10782-10793, Nov. 2020.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-1ID data,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2020, pp. 1-26.

M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence
time optimization for federated learning over wireless networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 4, pp.2457-2471,
Apr. 2021.

T. T. Vu, D. T. Ngo, H. Q. Ngo, M. N. Dao, N. H. Tran, and
R. H. Middleton, “User selection approaches to mitigate the straggler
effect for federated learning on cell-free massive MIMO networks,”
2020, arXiv:2009.02031.

W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu,
“Multi-armed bandit-based client scheduling for federated learning,”
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7108-7123,
Nov. 2020.

B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Oper. Res., vol. 26, no. 4,
pp. 681-683, 1978.

G. Lee, W. Saad, and M. Bennis, “An online optimization frame-
work for distributed fog network formation with minimal latency,”
IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2244-2258,
Apr. 2019.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press,
2014.

Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards flexible
device participation in federated learning,” 2020, arXiv:2006.06954.

U. Dotsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier,
“Optimal and successive approaches to signal design for multiple
antenna physical layer multicasting,” Bell Labs Tech. J., vol. 18,
pp. 105-128, 2014.

M.-H. Chen, B. Liang, and M. Dong, “Multi-user multi-task offload-
ing and resource allocation in mobile cloud systems,” IEEE Wireless
Commun., vol. 17, no. 10, pp. 6790-6805, Oct. 2018.

J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading
and resource allocation in mixed fog/cloud computing systems with
min-max fairness guarantee,” IEEE Trans. Commun., vol. 66, no. 4,
pp. 1594-1608, Apr. 2018.

H. Kim, D. J. Love, and S. Y. Park, “Optimal and successive approaches
to signal design for multiple antenna physical layer multicasting,” IEEE
Trans. Commun., vol. 59, no. 8, pp. 2316-2327, Aug. 2011.

A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX HotCloud, Berkeley, CA, USA,
2010, pp. 1-7.

T. D. Burd and R. W. Brodersen, “Processor design for portable
systems,” J. VLSI Signal Process. Syst., vol. 13, nos. 2-3, pp. 203-221,
1996.

M. E. T. Gerards, J. L. Hurink, and J. Kuper, “On the inter-
play between global DVFS and scheduling tasks with precedence
constraints,” [EEE Trans. Comput., vol. 64, no. 6, pp. 1742-1754,
Jun. 2015.

R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. Multidisciplinary Optim., vol. 26,
no. 6, pp. 369-395, Apr. 2004.

V.-D. Nguyen, H. V. Nguyen, O. A. Dobre, and O.-S. Shin, “A new
design paradigm for secure full-duplex multiuser systems,” /EEE J. Sel.
Areas Commun., vol. 36, no. 7, pp. 1480-1498, Jul. 2018.

A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric
convex approximation method with applications to nonconvex truss
topology design problems,” J. Global Optim., vol. 47, no. 1, pp. 29-51,
Jul. 2010.

NO. 10, OCTOBER 2022

[53] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-
tion. Philadelphia: MPS-SIAM Series on Optimi., SIAM, 2001.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

A. Krizhevsky and G. Hinton. (2009). Learning Multiple Layers of
Features From Tiny Images. [Online]. Available: https://www.cs.toronto.
edu/~kriz/cifar.html

Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590-3605, Sep. 2016.

[54]

[55]

[56]

Van-Dinh Nguyen (Member, IEEE) received the
B.E. degree in electrical engineering from the Ho
Chi Minh City University of Technology, Vietnam,
in 2012, and the M.E. and Ph.D. degrees in elec-
tronic engineering from Soongsil University, Seoul,
South Korea, in 2015 and 2018, respectively.

He was a Post-Doctoral Researcher and a Lecturer
with Soongsil University; a Post-Doctoral Visiting
Scholar with the University of Technology Sydney,
Australia, from July 2018 to August 2018; and
a Ph.D. Visiting Scholar with Queen’s University
Belfast, U.K., from June 2015 to July 2015 and in August 2016. He is
currently a Research Associate with the Interdisciplinary Centre for Security,
Reliability and Trust (SnT), University of Luxembourg. He has authored
or coauthored in some 60 articles published in international journals and
conference proceedings. His current research activity is focused on fog/edge
computing, the Internet of Things, 5G networks, and machine learning for
wireless communications. He has received the three best conference paper
awards, the IEEE COMMUNICATIONS LETTERS Exemplary Editor Awards
2019 and 2021, the IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCI-
ETY Exemplary Editor Award 2021, the IEEE TRANSACTIONS ON COMMU-
NICATIONS Exemplary Reviewer Award 2018, and the IEEE GLOBECOM
Student Travel Grant Award 2017. He has served as a reviewer for many
top-tier international journals on wireless communications. He has also been
a technical program committee member for several flag-ship international con-
ferences in the related fields. He is an Editor for the IEEE OPEN JOURNAL OF
THE COMMUNICATIONS SOCIETY and IEEE COMMUNICATIONS LETTERS.

Symeon Chatzinotas (Senior Member, IEEE) is
currently a Full Professor/Chief Scientist I and the
Head of the SIGCOM Research Group with the SnT,
University of Luxembourg. He coordinates research
activities in communications and networking, acting
as a PI in more than 20 projects and is the main
representative for 3GPP, ETSI, and DVB. In the
past, he was a Visiting Professor with the University
of Parma, Parma, Italy, lecturing on 5G wireless
networks. He was involved in numerous Research
and Development Projects for NCSR Demokritos,
CERTH Hellas and CCSR, University of Surrey, Guildford, U.K. He has
coauthored more than 500 technical papers in refereed international journals,
conferences, and scientific books. He was a co-recipient of the 2014 IEEE Dis-
tinguished Contributions to Satellite Communications Award and Best Paper
Awards at EURASIP JWCN, CROWNCOM, ICSSC, and WCNC. He is also
on the Editorial Board of the IEEE TRANSACTIONS ON COMMUNICATIONS,
IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, and the International
Journal of Satellite Communications and Networking.


http://dx.doi.org/10.1109/TPDS.2021.3131654
http://dx.doi.org/10.1109/TWC.2022.3144140

NGUYEN et al.: FedFog: NETWORK-AWARE OPTIMIZATION OF FL. OVER WIRELESS FOG-CLOUD SYSTEMS

Bjorn Ottersten (Fellow, IEEE) received the M.S.
degree in electrical engineering and applied physics
from Linkoping University, Linkoping, Sweden,
in 1986, and the Ph.D. degree in electrical engi-
neering from Stanford University, Stanford, CA,
USA, in 1990. He has held research positions
with the Department of Electrical Engineering,
Linkoping University; the Information Systems Lab-
oratory, Stanford University; the Katholieke Univer-
siteit Leuven, Leuven, Belgium; and the University
of Luxembourg, Luxembourg. From 1996 to 1997,
he was the Director of research with ArrayComm, Inc., a start-up in San
Jose, CA, USA, based on his patented technology. In 1991, he was appointed
as a Professor of signal processing with the Royal Institute of Technology
(KTH), Stockholm, Sweden. He has been the Head of the Department for
Signals, Sensors, and Systems, KTH; and the Dean of the School of Electrical
Engineering, KTH. He is currently the Director of the Interdisciplinary Centre
for Security, Reliability and Trust, University of Luxembourg. He is a fellow
of EURASIP. He has been a Board Member of the IEEE Signal Processing
Society, the Swedish Research Council, and serves for the boards of EURASIP
and the Swedish Foundation for Strategic Research. He was a recipient of the
IEEE Signal Processing Society Technical Achievement Award, the EURASIP
Group Technical Achievement Award, and the European Research Council
Advanced Research Grant (twice). He has coauthored journal articles that
received the IEEE Signal Processing Society Best Paper Award in 1993, 2001,
2006, 2013, and 2019; and eight IEEE conference papers best paper awards.
He has served as the Editor-in-Chief for EURASIP Journal on Advances in
Signal Processing. He acted on the editorial boards of IEEE TRANSACTIONS
ON SIGNAL PROCESSING, IEEE Signal Processing Magazine, IEEE OPEN
JOURNAL OF SIGNAL PROCESSING, EURASIP Journal on Advances in Signal
Processing, and Foundations and Trends in Signal Processing.

8599

Trung Q. Duong (Fellow, IEEE) is currently a
Chair Professor of telecommunications at Queen’s
University Belfast, U.K., where he was a Lecturer
(an Assistant Professor) (2013-2017), a Reader (an
Associate Professor) (2018-2020), and a Full Profes-
sor since August 2020. He also holds a prestigious
Research Chair of the Royal Academy of Engineer-
ing. His current research interests include wireless
communications, signal processing, machine learn-
ing, realtime optimization, and data analytic.
o He was awarded the Best Paper Award at the
IEEE Vehicular Technology Conference (VTC-Spring) in 2013, the IEEE
International Conference on Communications (ICC) 2014, the IEEE Global
Communications Conference (GLOBECOM) 2016 and 2019, the IEEE Digital
Signal Processing Conference (DSP) 2017, and the International Wireless
Communications and Mobile Computing Conference IWCMC) 2019. He was
a recipient of the prestigious Royal Academy of Engineering Research
Fellowship (2015-2020) and has won the prestigious Newton Prize 2017.
He has served as an Editor/Guest Editor for IEEE TRANSACTIONS ON
COMMUNICATIONS, IEEE WIRELESS COMMUNICATIONS, I[EEE Commu-
nications Magazine, IEEE COMMUNICATIONS LETTERS, and IEEE JOUR-
NAL ON SELECTED AREAS IN COMMUNICATIONS. He serves as an Editor
for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, and IEEE WIRELESS
COMMUNICATIONS LETTERS. He serves as an Executive Editor for IEEE
COMMUNICATIONS LETTERS.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


