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Abstract—In this paper, we address a dynamic network re-
source selection problem for mobile users in a rate-splitting mul-
tiple access (RSMA)-enabled network by leveraging evolutionary
games. Particularly, mobile users are able to locally and dynam-
ically make their selection on orthogonal resource blocks (RBs),
which are also considered as network resources (NRs), over time
to achieve their desired utilities. Then, RSMA is used for each
group of users selecting the same NR. With the use of RSMA,
the main goal is to optimize the beamformers of the common and
private messages for users in the same group to maximize their
sum rate. The resulting problem is generally non-convex, and
thus we develop a successive convex approximation (SCA)-based
algorithm to efficiently solve it in an iterative fashion. To model
the NR adaptation of users, we propose to use two evolutionary
games, i.e. a traditional evolutionary game (TEG) and fractional
evolutionary game (FEG). The FEG approach enables users to
incorporate memory effects (i.e. their past experiences) for their
decision-making, which is more realistic than the TEG approach.
We then theoretically verify the existence of the equilibrium of the
proposed game approaches. Simulation results are provided to
validate their consistency with the theoretical analysis and merits
of the proposed approaches. They also reveal that, compared with
TEG, FEG enables users to leverage past information for their
decision-making, resulting in less communication overhead, while
still guaranteeing convergence.

Index Terms—Dynamic network resource selection, evolution-
ary game, memory effect, orthogonal resource blocks, rate-
splitting multiple access.

I. INTRODUCTION

Rate-splitting multiple access (RSMA) has been regarded
as a promising technique for the next generation mobile
networks (i.e. 6G) [1]–[3]. Following the RSMA principles,
each original message intended to a user is split into common
and private parts. The common parts of all users are combined
into a single common message, while the private parts are
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encoded into separate messages (i.e. private messages) for the
intended users [1]. Each user then recovers its original message
from the decoded common and private messages. RSMA
divides original messages into common and private parts to
partially decode interference and partially treat interference as
noise. Thus, RSMA enables flexible and powerful interference
management to enhance the spectral efficiency, energy effi-
ciency, reliability, and quality of service (QoS) compared with
existing multiple access technologies such as space division
multiple access (SDMA) and non-orthogonal multiple access
(NOMA) [1]–[5]. Recently, several works related to RSMA
have been investigated, and a comprehensive survey on RSMA
can be found in [2]. In general, the works related to RSMA aim
to maximize the sum rate, e.g., [6], [7], and [8], the minimum
rate among users, e.g., [9] and [10], and energy efficiency,
e.g., [4] and [11]. These objectives can be well obtained by
optimizing the transmit power and beamformers associated
with the common message and private messages.

However, the existing RSMA-related works have mostly
considered a single subcarrier or single resource block (RB)
where all users share the same subcarrier or the same RB.
Different from the existing works, this paper investigates an
RSMA-based cellular network with multiple orthogonal RBs.
The proposed system is user-centric in which each user is
allowed to dynamically select and access an RB over time.
Thus, there may be multiple users competing for the access
on the RB. Then, RSMA is used to allow multiple users to
access the same NR. The main motivations are detailed as
follows. First, RSMA allows the concurrent users to share
the same spectrum through performing the power allocation
to them. Thus, a base station (BS) may only support a
limited number of users due to its limited power budget.
To support more users, multiple RBs should be considered,
and therefore, the proposed system includes the orthogonal
multiple access (OMA) scheme. However, compared to OMA
which allocates one RB to only one user, the proposed system
can double the number of users by virtue of RSMA. Second,
their respective channels associated with different RBs can
be different from each other, which result in the difference
in signal-to-interference-plus-noise ratio (SINR). Meanwhile,
future networks are becoming user-centric that allow the users
to locally and dynamically select and switch among network
resources (NRs) over time to achieve their best QoS. This, on
the other hand, reduces the complexity of resource allocation
task at the BS since the task is partially done at user side.
Therefore, a natural question that arises is how to model the
dynamic RB selection of users while still guaranteeing the
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optimal system performance.
Evolutionary game has been considered as an effective

tool to model the selection behavior of players [12]. That
is, each player in the game is able to dynamically adjust
its selection strategy until achieving a solution at which it
has no an incentive to change its strategy since this will
undermine other players’ utility. The solution is known as the
equilibrium of the game. The local decisions of users and the
equilibrium are very crucial in the area of communication and
networking that guarantee the long-term stability as well as
scalability of the network. Therefore, evolutionary game has
been widely adopted to study dynamic network service (e.g.
4G, 5G, wireless LAN) selection of mobile users [13], [14],
[15], [16]. As presented in [14], the computation complexity
of strategy adaptation at the user side is low (i.e. O (1)) that
is suitable in dynamic network environments.

The advantages of the evolutionary game motivate us to
adopt this game for studying the dynamic RB selection of
users in the RSMA-enabled networks. The major contributions
of the paper are as follows:

• We consider a dynamic, i.e., time-variant, network re-
source selection problem in an RSMA-enabled cellular
network. The considered network allows users to locally
and dynamically select and adapt RBs over time to
achieve their desired QoSs.

• We formulate the optimization problem to maximize the
sum rate of users in the group sharing the same RB by
optimizing the common data rate and beamformers of
common and private messages. The resulting problem
is non-convex, and we develop an efficient iterative
algorithm based on the successive convex approximation
(SCA) framework [17] to solve this problem in an itera-
tive fashion, which arrives at least a local optimum.

• To model the RB adaptation of the users, we adopt
the traditional evolutionary game (TEG) by leveraging
the replicator dynamic process. This approach allows
switching among RBs to achieve higher data rate. We
then prove that the TEG approach is able to converge to
an equilibrium at which the users do not have an incentive
to switch their RB selection.

• To capture the impact of the users’ memory on their
decision-making, we reformulate TEG to FEG by ac-
counting for the users’ memory effect since users are ac-
tually aware of their historical experience before decision-
making. We theoretically analyze and prove the unique
equilibrium of the FEG approach.

• Extensive numerical results are provided to validate the
theoretical analysis of the proposed approaches as well
as to confirm their effectiveness. Specifically, we provide
results related to the direction field of the replicator
dynamics to validate the stability of the equilibrium. The
numerical results also reveal that both the TEG and FEG
approaches still reach their equilibrium under outdated
information. Interestingly, the FEG outperforms TEG by
exploiting the outdated information more effectively for
decision-making.

The rest of the paper is organized as follows. In Section III,

we present the system model and formulate an optimization
problem in a general case. In Section IV, we develop a SCA
algorithm to solve the sum rate optimization problem for the
general case. In Section V, we present the expected data rate
and utility of users. In Section VI, we formulate the dynamic
RB selection problem by using the TEG and FEG approaches.
Simulation results and discussions are provided Section VII,
while Section VIII concludes the paper.

Notation: Throughout the paper, vectors and scalars are
denoted by bold lowercase and lowercase letters. C represents
the space of complex matrices and vectors. (·)∗ and (·)H
denote the conjugate of a complex number and the conjugate
transpose of a matrix or vector, respectively. CN

(
µ, σ2

)
represents circularly symmetric complex Gaussian distribution
with mean µ and variance σ2.

II. RELATED WORKS

A. Rate Splitting Multiple Access (RSMA) Approaches

Recently, several works related to RSMA have been inves-
tigated, and a comprehensive survey on RSMA can be found
in [2]. Considering an RSMA-enabled single input single
output (SISO) system, the work in [18] aimed to maximize
the sum rate by jointly optimizing the common rate, transmit
power of the common message, and transmit power of the
private messages under successful SIC power requirements.
The simulation results show that by simultaneously transmit-
ting signals to all users at the same frequency, the RSMA
scheme outperforms the SDMA scheme in terms of sum rate.
However, this work considers the scenario with a single-
antenna BS, which can limit the data rate achieved by the
users. For this, RSMA-enabled multi-user multiple input single
output (MISO) systems, e.g., [19] and [20], are considered.
In such a work, the optimal common rate allocation and
beamformer design are jointly considered. In particular, the
work in [19] studied the problem of maximizing the total rate
of users by optimizing the beamformers associated with the
common and private messages given the imperfect channel
state information (CSI). This work shows that compared with
the no-RSMA scheme, the RSMA scheme is able to boost
the achievable Degrees of Freedom (DoF) given certain CSI
error. The simulation results show that the RSMA scheme
outperforms the no-RSMA scheme in terms of ergodic sum
rate, especially SNR ≥ 15 dB. Apart from the sum rate,
the existing work related to RSMA aims to maximize the
minimum rate among all users, i.e. max-min fairness, as
presented in [21]. Then, the authors in [21] proposed a robust
algorithm based on the cutting-set method coupled with the
Weighted Minimum Mean Square Error (WMMSE) to solve
the max-min fairness problem. The same problem is found
in [22]. However, the work in [22] investigated the fairness
problem under two CSI scenarios, i.e. the transmitter knows
the Rayleigh fading channels with spatial correlations, and the
transmitter knows the uniform linear array deployment with
channel amplitudes and mean of phase. The numerical results
show that the RSMA scheme significantly gains the max-min
fairness over the SDMA scheme in both scenarios. To enhance
the data rate of the users, multiple subcarriers are considered in
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RSMA as presented in [23]. In this work, the users are divided
into groups, and the users in a group share the same subcarrier.
Then, the RSMA is applied to the group. The work aims to
optimize the subcarrier allocation and beamformers in each
group to maximize the total max-min fairness over groups.
Recently, RSMA has been combined with enabling technolo-
gies in beyond 5G networks. In particular, RSMA is shown
to efficiently manage the inter-beam interference for satellite
communications [24]. Its application for simultaneous wireless
information and power transfer (SWIPT) was also investigated
in [25] to improve the sum rate of information receivers (IRs)
compared with NOMA-based SWIPT. Combination of RSMA
and intelligent reflecting surface (IRS) was studied in [26],
aiming to improve the energy efficiency and reduce the outage
probability [27]. The beamformer associated with the common
message in RSMA can effectively manage interference. Thus,
RSMA is integrated with a radar system, namely RSMA-based
dual-function radar communication (DFRC), as proposed in
[28] and [29], that is shown to improve the communication
performance and radar performance as well as reduce the
hardware size and cost.

B. Evolutionary Game Approaches

As mentioned earlier, the equilibrium of the evolutionary
game, if existing, is important in the area of communication
and networking since it guarantees the long-term stability of
the network. Evolutionary game has been widely adopted to
model the dynamic network selection of mobile users. In
particular, the authors in [13] investigated the evolutionary
game for the dynamic access network selection of the users
in heterogeneous wireless access networks, i.e., WiFi and
cellular networks. The utility of each user is a function of the
achievable network capacity and the network cost. Similarly,
the authors in [30] considered the access mode selection in a
multitier cellular network, i.e., sub-6 GHz/mmWave cellular
networks. Therein, the strategy of each mobile user is to
select a tier to maximize its utility, which is a function of
SINR and handover cost. Evolutionary game is adopted to
model the dynamic tier selection of each user. The same
problem can be found in [31], but the utility of each user
is a function of achievable data rate and service cost. Apart
from the network tier selection, evolutionary game is used
to model the dynamic network resource/service selection of
mobile users. In particular, the authors in [14] proposed to
use the evolutionary game for the dynamic selection on com-
munication services, i.e., including active data transmission
or data backscatter. Considering an IRS-assisted network, the
authors in [15] and [16] adopted the evolutionary game to
model the dynamic selection on NRs, i.e., IRS modules and
power level of the users. Both the theoretical analysis and
simulation results in [15] and [16] showed that the evolu-
tionary game approach assures a unique Nash equilibrium.
The authors in [32] leveraged the evolutionary game to model
the channel selection of self-interest-driven vehicular nodes.
The utility of each vehicular node is expressed by the average
number of packets that the node successfully transmits. The
evolutionary game can be used to model the dynamic network

service providers. Specifically, the authors in [33] considered
a spectrum secondary market of cognitive radio networks. In
the market, secondary providers provide spectrum resources
to secondary users. Different secondary providers can set
different prices for their spectrum resources. Therefore, the
secondary users select a service provider based on its perceived
instantaneous utility, which depends on the allocated spectrum
and spectrum cost. The evolutionary game is used to address
the dynamic service provider selection of the secondary users.
The authors in [34] considered an UAV-assisted Metaverse
system in which UAVs as IoT devices collect sensing data
for digital twin synchronization of virtual service providers
(VSPs). Each UAV receives an incentive reward for its data
collection. Different VSPs have different incentive pools, and
thus each UAV needs to make its VSP selection to achieve
the highest incentive reward. Evolutionary game is then used
to model the dynamic VSP selection of the UAVs.

Different from the aforementioned works, the work in [35]
investigated the access mode selection problem of D2D users
in fog radio access networks. The strategy of each D2D user
is to select the access mode, i.e., a nearby D2D user or a fog
node, for its content request. Its utility is a function of ergodic
rate and delay cost. Then, the competition among the groups
of the D2D users is formulated as a dynamic evolutionary
game. The aforementioned evolutionary game approaches are
summarized in Table I, while a comprehensive survey of
RSMA approaches can be referred to [2].

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the RSMA-enabled network
with multiple RBs, and then formulate the problem formula-
tion for a general case where users select the same RB. Each
RB is an NR, and thus in the rest of the paper, “RB” and
“NR” can be used interchangeably.

A. Network Model

Base station

User 1 User 2

User N
User 3

12 15 2  12 15 2 (kHz) (kHz)

Network 

resources

Population

kN

NR 1 NR K

1N

Fig. 1: Dynamic network resource selection in an RSMA
system.

We consider a downlink RSMA system that consists of a
BS serving a set N of N users as shown in Fig. 1. The BS
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TABLE I: Summary of Evolutionary Game Approaches for Communication and Networking

Refs. Scenario Player Strategy Utility/payoff

[13] HetNet Mobile users Access network selection Network capacity and service cost

[14] Backscatter-assisted
cognitive radio network

Secondary
transmitter

Access point, active transmission, and
backscatter selection

Amount of transmitted data and service
cost

[15] and [16] IRS-assisted cellular
network Mobile user Base station, IRS module, and power

level selection Data rate and service cost

[29] Multi-tier cellular
network Mobile user Network tier selection SINR and handover cost

[30] Multi-tier cellular
network Mobile user Network tier selection Data rate and service cost

[31] Cognitive vehicular
networks Vehicular node Channel selection Average number of

successfully-transmitted packets
[32] Cognitive radio network Secondary user Spectrum provider selection Allocated spectrum and spectrum cost

[33] UAV-assisted Metaverse
system UAVs Virtual service provider selection Incentive cost

[34] Fog radio access
network D2D user Nearby D2D user and fog node

selection Ergodic rate and delay cost

is equipped with L antennas and has a set K of K NRs.
The bandwidth of each NR is determined according to the
5G standard [36]. In particular, each NR k ∈ K has 12
subcarriers and the frequency spacing of each subcarrier is 15
kHz. Therefore, the bandwidth of NR k is Bk = 12×15×2α

kHz, where α ∈ {0, 1, 2, 3, 4} is the numerology. Each user
only occupies at most one NR in one time slot, but the NR can
be occupied by multiple users for the rate-splitting purpose. In
future networks, users are able to dynamically decide the NR
that yields to higher data rate and utility depending on their
channel conditions. Thus, in this work we consider a dynamic
and decentralized network in which each user can dynamically
select an NR over time. Assuming that there is a set Nk of
Nk ≥ 0 users selecting NR k. As Nk = 0, no user selects NR
k. The BS then adopts RSMA for users selecting the same
NR. With RSMA, the BS transmits i) a common message
to all users in the group and ii) the private massages to the
intended users in the group. For convenience, we name the
transmit power of the common message as common power and
the transmit power of the private messages as private power.
Before transmitting the messages to each group, the BS needs
to optimize beamformers associated with the common and
private messages, which will be presented in the next section.

B. Rate-Splitting Multiple Access Scheme

Without loss of generality, we focus on group k and
assume that user i ∈ N selects NR k. We define sk ≜
[sk,0, sk,1, . . . , sk,Nk

] where sk,0 is the common message
transmitted by the BS to group k, sk,i is the private message
transmitted by the BS to user i in group k, and E

[
sHk sk

]
= I.

We further denote wk,0 ∈ CL×1 as the beamformer associated
with the common message, and wk,i ∈ CL×1 as the beam-
former associated with the private message of user i in group
k. By wk ≜ [wk,0,wk,1, . . . ,wk,Nk

], the per-group power
constraint can be expressed as [37]:

tr
(
wkw

H
k

)
≤ Pk (1)

where Pk is the power budget allocated (by the BS) to NR k.
To guarantee the fairness among groups, Pk is determined as
Pk = Pmax/K, where Pmax is the power budget of the BS.
The signal intended to group k transmitted by the BS is given

by

xk = wk,0sk,0 +
∑
j∈Nk

wk,jsk,j . (2)

Accordingly, the received signal at user i selecting NR k
is [26]

yk,i = hH
k,i

(
wk,0sk,0 +

∑
j∈Nk

wk,jsk,j

)
+ ωk,i (3)

where hk,i ∈ CL×1 is the channel from the BS to user i and
ωk,i is the additive noise with variance σ2

0 .
The data rate achieved by user i for decoding the common

message is given by

R0
k,i = Bk log2

(
1 +

|hH
k,iwk,0|2∑

j∈Nk
|hH

k,iwk,j |2 +Bkσ2

)
. (4)

To guarantee that all users in a group (say group k) can
successfully decode the common message with RSMA, the
BS needs to transmit the common message at a rate of

R0
k = min

i∈Nk

{
R0

k,i

}
. (5)

Let C0
k,i be the allocated common data rate of user i in group

k. The following rate constraint is imposed [26]∑
i∈Nk

C0
k,i ≤ R0

k. (6)

The common message is then removed by SIC before decoding
the private message. The achievable rate of the private message
of user i in group k is given by

Rk,i = Bk log2

(
1 +

|hH
k,iwk,i|2∑

j∈Nk,j ̸=i |hH
k,iwk,j |2 +Bkσ2

)
. (7)

The total transmission rate of user i in group k is the sum of
its common message rate C0

k,i and private message rate Rk,i,
given as

Rtot
k,i = C0

k,i +Rk,i. (8)
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C. Problem Formulation

For every group adopted RSMA, we aim to maximize the
sum rate of all users in the same group by optimizing i)
the common data rate, ii) beamformer associated with the
common message, and iii) beamformers associated with the
private messages. The optimization problem for group k is
mathematically formulated as follows

max
wk,0,{C0

k,i,wk,i}
i∈Nk

f(C0
k,i,wk,i) ≜

∑
i∈Nk

(
C0

k,i +Rk,i

)
(9a)

s.t.
∑
i∈Nk

C0
k,i ≤ R0

k (9b)

tr
(
wkw

H
k

)
≤ Pk. (9c)

The optimization problem given in (9) is non-convex due to the
non-concavity of the objective function (9a) and non-convexity
of constraint (9b), which results in difficulty for obtaining a
global optimal solution. In the next section, we will leverage
the SCA framework [17] to convexify the optimization prob-
lem (9) and thereafter develop an iterative algorithm to obtain
its solution.

IV. SUCCESSIVE CONVEX APPROXIMATION ALGORITHM

Let
(
w

⟨κ⟩
k,0 ,

{
C

0,⟨κ⟩
k,i ,w

⟨κ⟩
k,i

}
i∈Nk

)
be a feasible point for (9)

found from the ⟨κ−1⟩-th iteration. In iteration κ, we determine
the next feasible point

(
w

⟨κ+1⟩
k,0 ,

{
C

0⟨κ+1⟩
k,i ,w

⟨κ+1⟩
k,i

}
i∈Nk

)
.

Considering user i ∈ Nk in the objective function, we first ap-
ply the inequality (A.3) in Appendix A to the private data rate
of Rk,i with x =

∣∣hH
k,iwk,i

∣∣2, y =
∑

j∈Nk,j ̸=i

∣∣hH
k,iwk,j

∣∣2 +
Bkσ

2, and x̄ =
∣∣hH

k,iw
⟨κ⟩
k,i

∣∣2, ȳ =
∑

j∈Nk,j ̸=i

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +

Bkσ
2. Then, by using the first-order Taylor approximation,

Rk,i can be approximated by the concave function R⟨κ⟩
k,i given

in (11) over the trust region defined by

2ℜ
{(

hH
k,iwk,i

)(
hH
k,iw

⟨κ⟩
k,i

)∗}− ∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2 ≥ 0, ∀i (10)

with

0 < a
⟨κ⟩
k,i = Bk log2

(
1 +

∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2∑
j∈Nk,j ̸=i

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +Bkσ2

)
and

0 < b
⟨κ⟩
k,i =

Bk

∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2∑
j∈Nk,j ̸=i

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2+Bkσ2

ln 2
(
1 +

∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2∑
j∈Nk,j ̸=i

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2+Bkσ2

) .
From (11), we can approximate the objective function in (9)

by the following concave function

f(C0
k,i,wk,i) ≥

∑
i∈Nk

(
C0

k,i +R
⟨κ⟩
k,i

)
= f ⟨κ⟩(C0

k,i,wk,i). (12)

Next, we tackle constraint (9b). Similarly, we ap-
ply the inequality given in (A.3) to R0

k,i with x =∣∣hH
k,iwk,0

∣∣2, x̄ =
∣∣hH

k,iw
⟨κ⟩
k,0

∣∣2, y =
∑

j∈Nk

∣∣hH
k,iwk,j

∣∣2 +

Bkσ
2, ȳ =

∑
j∈Nk

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 + Bkσ
2. Then, by using the

first-order Taylor approximation, R0
k,i is approximated by the

concave function R0
k,i

⟨κ⟩ given in (13), over the trust region
defined by

2ℜ
{(

hH
k,iwk,0

)(
hH
k,iw

⟨κ⟩
k,0

)∗}− ∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2 ≥ 0 (14)

with

0 < a
0,⟨κ⟩
k,i = Bk log2

(
1 +

∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2∑
j∈Nk

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +Bkσ2

)
and

0 < b
0,⟨κ⟩
k,i =

Bk

∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2∑
j∈Nk

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2+Bkσ2

ln 2
(
1 +

∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2∑
j∈Nk

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2+Bkσ2

) .
Using (13), the nonconvex constraint in (9b) can be interac-
tively replaced by the following convex constraint∑

i∈Nk

C0
k,i ≤ R

0,⟨κ⟩
k = min

i∈Nk

{
R

0,⟨κ⟩
k,i

}
. (15)

From the above developments, the approximate convex
program of (9) solved at iteration κ is given as

max
wk,0,{C0

k,i,wk,i}
i∈Nk

f ⟨κ⟩(C0
k,i,wk,i) (16a)

s.t. (9c), (10), (14), (15). (16b)

Generating an initial feasible point: We note that the
approximate convex problem (16) requires an initial feasible
point to start the iterative algorithm successfully at the first
iterations. In doing so, we first take any value for C0,⟨0⟩

k,i and
randomly generate an initial point

(
w

⟨0⟩
k,0,
{
w

⟨0⟩
k,i

}
i∈Nk

)
for

(9c). Then, we solve the following simplified problem of (16):

max
wk,0,{wk,i}i∈Nk

R
0,⟨κ⟩
k −

∑
i∈Nk

C
0,⟨0⟩
k,i (17a)

s.t. (9c), (10), (14) (17b)

until reaching a positive objective value, such as R
0,⟨κ⟩
k −∑

i∈Nk
C

0,⟨0⟩
k,i ≥ 0. Solving (17) generates a feasible set of(

w
⟨κ⟩
k,0 ,

{
C

0,⟨0⟩
k,i ,w

⟨κ⟩
k,i

}
i∈Nk

)
that is considered to be an initial

feasible point for (16). The proposed SCA-based iterative algo-
rithm for solving the non-convex problem in (9) is summarized
in Algorithm 1.

Convergence and complexity analysis: We now
discuss the convergence of the proposed SCA-based
Algorithm 1. Since

(
w

⟨κ⟩
k,0 ,

{
C

0,⟨κ⟩
k,i ,w

⟨κ⟩
k,i

}
i∈Nk

)
and(

w
⟨κ+1⟩
k,0 ,

{
C

0,⟨κ+1⟩
k,i ,w

⟨κ+1⟩
k,i

}
i∈Nk

)
are the feasible point and

the optimal solution to (16), respectively, we can show that

f ⟨κ⟩
(
w

⟨κ+1⟩
k,0 ,w

⟨κ+1⟩
k,i

)
> f ⟨κ⟩

(
w

⟨κ⟩
k,0 ,w

⟨κ⟩
k,i

)
, ∀i ∈ Nk (18)

for any
(
w

⟨κ⟩
k,0 ,

{
C

0,⟨κ⟩
k,i ,w

⟨κ⟩
k,i

}
i∈Nk

)
̸=
(
w

⟨κ+1⟩
k,0 ,

{
C

0,⟨κ+1⟩
k,i ,

w
⟨κ+1⟩
k,i

}
i∈Nk

)
. It simply means that

(
w

⟨κ+1⟩
k,0 ,

{
C

0,⟨κ+1⟩
k,i ,
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Rk,i ≥ a⟨κ⟩k,i + b
⟨κ⟩
k,i

(
2−

∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2∣∣hH
k,iwk,i

∣∣2 −
∑

j∈Nk,j ̸=i

∣∣hH
k,iwk,j

∣∣2 +Bkσ
2∑

j∈Nk,j ̸=i

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +Bkσ2

)

≥ a⟨κ⟩k,i + b
⟨κ⟩
k,i

(
2−

∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2
2ℜ
{(

hH
k,iwk,i

)(
hH
k,iw

⟨κ⟩
k,i

)∗}− ∣∣hH
k,iw

⟨κ⟩
k,i

∣∣2 −
∑

j∈Nk,j ̸=i

∣∣hH
k,iwk,j

∣∣2 +Bkσ
2∑

j∈Nk,j ̸=i

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +Bkσ2

)
≜ R

⟨κ⟩
k,i . (11)

R0
k,i ≥ a

0,⟨κ⟩
k,i + b

0,⟨κ⟩
k,i

(
2−

∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2∣∣hH
k,iwk,0

∣∣2 −
∑

j∈Nk

∣∣hH
k,iwk,j

∣∣2 +Bkσ
2∑

j∈Nk

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +Bkσ2

)

≥ a0,⟨κ⟩k,i + b
0,⟨κ⟩
k,i

(
2−

∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2
2ℜ
{(

hH
k,iwk,0

)(
hH
k,iw

⟨κ⟩
k,0

)∗}− ∣∣hH
k,iw

⟨κ⟩
k,0

∣∣2 −
∑

j∈Nk

∣∣hH
k,iwk,j

∣∣2 +Bkσ
2∑

j∈Nk

∣∣hH
k,iw

⟨κ⟩
k,j

∣∣2 +Bkσ2

)
≜ R0

k,i
⟨κ⟩
. (13)

Algorithm 1 Iterative Algorithm For Problem (9)

Initialization: Take any value of C0,⟨0⟩
k,i , generate an initial

point
(
w

⟨0⟩
k,0,
{
w

⟨0⟩
k,i

}
i∈Nk

)
for (9c), and iterate (17) for

a feasible point
(
w

⟨κ⟩
k,0 ,

{
C

0,⟨0⟩
k,i ,w

⟨κ⟩
k,i

}
i∈Nk

)
for (16). Set

κ = 0.
1: repeat
2: Solve the convex program (16) to obtain the optimal

solution
(
w⋆

k,0,
{
C0,⋆

k,i ,w
⋆
k,i

}
i∈Nk

)
3: Update

(
w

⟨κ+1⟩
k,0 ,

{
C

0,⟨κ+1⟩
k,i ,w

⟨κ+1⟩
k,i

}
i∈Nk

)
:=
(
w⋆

k,0,{
C0,⋆

k,i ,w
⋆
k,i

}
i∈Nk

)
4: Set κ← κ+ 1
5: until Convergence

w
⟨κ+1⟩
k,i

}
i∈Nk

)
is a better point to (16) than

(
w

⟨κ⟩
k,0 ,

{
C

0,⟨κ⟩
k,i ,

w
⟨κ⟩
k,i

}
i∈Nk

)
. Considering (12), it is true that [38], [39]:

f
(
w

⟨κ⟩
k,0 ,w

⟨κ⟩
k,i

)
= f ⟨κ⟩

(
w

⟨κ⟩
k,0 ,w

⟨κ⟩
k,i

)
(19)

< f ⟨κ⟩
(
w

⟨κ+1⟩
k,0 ,w

⟨κ+1⟩
k,i

)
(20)

≤ f
(
w

⟨κ+1⟩
k,0 ,w

⟨κ+1⟩
k,i

)
. (21)

This clearly shows that the optimal solution
(
w

⟨κ+1⟩
k,0 ,{

C
0,⟨κ+1⟩
k,i ,w

⟨κ+1⟩
k,i

}
i∈Nk

)
of (16) satisfies the convergence

condition: f
(
w

⟨κ+1⟩
k,0 ,w

⟨κ+1⟩
k,i

)
> f

(
w

⟨κ⟩
k,0 ,w

⟨κ⟩
k,i

)
,∀i ∈ Nk.

The sequence
(
w

⟨κ+1⟩
k,0 ,w

⟨κ+1⟩
k,i

)
converges to a saddle point(

w̄k,0, w̄k,i

)
after a sufficiently large number of iterations

[39]. The numbers of decision variables and convex constraints
in solving (16) are L+Nk +LNk and 2Nk +2, respectively.
Thus, the worst-case computational complexity per iteration
of Algorithm 1 is O

(√
2Nk(L+Nk + LNk)

3
)

[40].

V. EXPECTED DATA RATE AND UTILITY

The data rate achieved by each user depends on the number
of remaining users selecting the same NR due to interference.

Meanwhile, the NR selection of each user is random, and thus
we need to determine the expected data rate that all users can
obtain. We let xk,i be the probability that user i ∈ N selects
NR k ∈ K. To simply present the data rate achieved by user i,
we consider the case with three users, i.e. N = 3. A general
scenario with more than 3 users can be investigated in the
same way. We denote xk,1, xk,2, and xk,3 as the probabilities
that users 1, 2 and 3 select NR k, respectively. In this example,
the expected data rate of users can be presented as follows.

A. Expected Data Rate
There are seven possible cases for the user association as

follows.
1) Case 1 - All users select NR k: In this case, all users

belong to group k (i.e. Nk = {1, 2, 3}) with the probability
of xk,1xk,2xk,3. Therein, user 1 suffers interference from both
users 2 and 3, and vice versa. The data rates obtained by users
1, 2 and 3 are given by

R
tot,{1,2,3}
k,1 = C

0,{1,2,3}
k,1 +

Bk log2

(
1 +

∣∣hH
k,1w

{1,2,3}
k,1

∣∣2∣∣hH
k,1w

{1,2,3}
k,2

∣∣2 + ∣∣hH
k,1w

{1,2,3}
k,3

∣∣2 +Bkσ2

)
,

(22)
R

tot,{1,2,3}
k,2 = C

0,{1,2,3}
k,2 +

Bk log2

(
1 +

∣∣hH
k,2w

{1,2,3}
k,2

∣∣2∣∣hH
k,2w

{1,2,3}
k,1

∣∣2 + ∣∣hH
k,2w

{1,2,3}
k,3

∣∣2 +Bkσ2

)
(23)

and

R
tot,{1,2,3}
k,3 = C

0,{1,2,3}
k,3 +

Bk log2

(
1 +

∣∣hH
k,3w

{1,2,3}
k,3

∣∣2∣∣hH
k,3w

{1,2,3}
k,1

∣∣2 + ∣∣hH
k,3w

{1,2,3}
k,3

∣∣2 +Bkσ2

)
,

(24)
respectively, where

C
0,{1,2,3}
k,1 + C

0,{1,2,3}
k,2 + C

0,{1,2,3}
k,3



7

≤ min
{
R

0,{1,2,3}
k,1 , R

0,{1,2,3}
k,2 , R

0,{1,2,3}
k,3

}
(25)

with R0,{1,2,3}
k,1 , R0,{1,2,3}

k,2 , and R0,{1,2,3}
k,3 being given in (26).

2) Case 2 - Users 1 and 2 select NR k while user 3 does not:
In this case, users 1 and 2 belong to group k (i.e. Nk = {1, 2})
with the probability of xk,1xk,2 (1− xk,3). Therein, user 1
suffers interference from user 2, and vice versa. The data rates
obtained by users 1 and 2 are given by

R
tot,{1,2}
k,1 =C

0,{1,2}
k,1

+Bk log2

(
1 +

∣∣hH
k,1w

{1,2}
k,1

∣∣2∣∣hH
k,1w

{1,2}
k,2

∣∣2 +Bkσ2

)
(27)

and

R
tot,{1,2}
k,2 =C

0,{1,2}
k,2

+Bk log2

(
1 +

∣∣hH
k,2w

{1,2}
k,2

∣∣2∣∣hH
k,2w

{1,2}
k,1

∣∣2 +Bkσ2

)
(28)

respectively, where

C
0,{1,2}
k,1 + C

0,{1,2}
k,2 ≤ min

{
R

0,{1,2}
k,1 , R

0,{1,2}
k,2

}
(29)

with

R
0,{1,2}
k,1 =Bk log2

(
1 +

∣∣hH
k,1w

{1,2}
k,0

∣∣2∣∣hH
k,1w

{1,2}
k,1

∣∣2 + ∣∣hH
k,1w

{1,2}
k,2

∣∣2 +Bkσ2

)
(30)

R
0,{1,2}
k,2 =Bk log2

(
1 +

∣∣hH
k,2w

{1,2}
k,0

∣∣2∣∣hH
k,2w

{1,2}
k,1

∣∣2 + ∣∣hH
k,2w

{1,2}
k,2

∣∣2 +Bkσ2

)
.

(31)

3) Case 3 - Users 1 and 3 select NR k while user 2 does
not: In this case, users 1 and 3 belong to group k (i.e. Nk =
{1, 3}) with the happening probability of xk,1 (1− xk,2)xk,3.
Therein, user 1 suffers the interference from user 3, and vice
versa. The data rates obtained by users 1 and 3 are given by

R
tot,{1,3}
k,1 =C

0,{1,3}
k,1

+Bk log2

(
1 +

∣∣hH
k,1w

{1,3}
k,1

∣∣2∣∣hH
k,1w

{1,3}
k,3

∣∣2 +Bkσ2

)
(32)

and

R
tot,{1,3}
k,3 =C

0,{1,3}
k,3 (33)

+Bk log2

(
1 +

∣∣hH
k,3w

{1,3}
k,3

∣∣2∣∣hH
k,3w

{1,3}
k,1

∣∣2 +Bkσ2

)
, (34)

respectively, where

C
0,{1,3}
k,1 + C

0,{1,3}
k,3 ≤ min

{
R

0,{1,3}
k,1 , R

0,{1,3}
k,3

}
(35)

with

R
0,{1,3}
k,1 =Bk log2

(
1 +

∣∣hH
k,1w

{1,3}
k,0

∣∣2∣∣hH
k,1w

{1,3}
k,1

∣∣2 + ∣∣hH
k,1w

{1,3}
k,3

∣∣2 +Bkσ2

)
(36)

R
0,{1,3}
k,3 =Bk log2

(
1 +

∣∣hH
k,3w

{1,3}
k,0

∣∣2∣∣hH
k,3w

{1,3}
k,1

∣∣2 + ∣∣hH
k,3w

{1,3}
k,3

∣∣2 +Bkσ2

)
.

(37)

4) Case 4 - Users 2 and 3 select NR k while user 1 does not:
In this case, users 2 and 3 belong to group k (i.e. Nk = {2, 3})
with the happening probability of (1− xk,1)xk,2xk,3. Therein,
user 2 suffers the interference from user 3, and vice versa. The
data rates obtained by users 2 and 3 are given by

R
tot,{2,3}
k,2 =C

0,{2,3}
k,2

+Bk log2

(
1 +

∣∣hH
k,2w

{2,3}
k,2

∣∣2∣∣hH
k,2w

{2,3}
k,3

∣∣2 +Bkσ2

)
(38)

and

R
tot,{2,3}
k,3 =C

0,{2,3}
k,3

+Bk log2

(
1 +

∣∣hH
k,3w

{2,3}
k,3

∣∣2∣∣hH
k,3w

{2,3}
k,2

∣∣2 +Bkσ2

)
, (39)

respectively, where

C
0,{2,3}
k,2 + C

0,{2,3}
k,3 ≤ min

{
R

0,{2,3}
k,2 , R

0,{2,3}
k,3

}
(40)

with

R
0,{2,3}
k,2 =Bk log2

(
1 +

∣∣hH
k,2w

{2,3}
k,0

∣∣2∣∣hH
k,2w

{2,3}
k,2

∣∣2 + ∣∣∣hH
k,2w

{2,3}
k,3

∣∣∣2 +Bkσ2

)
(41)

R
0,{2,3}
k,3 =Bk log2

(
1 +

∣∣hH
k,3w

{2,3}
k,0

∣∣2∣∣hH
k,3w

{2,3}
k,2

∣∣2 + ∣∣hH
k,3w

{2,3}
k,3

∣∣2 +Bkσ2

)
.

(42)

5) Case 5 - User 1 selects NR k while users 2 and 3 do
not: Only user 1 belongs to group k (i.e. Nk = {1}) with the
happening probability of xk,1 (1− xk,2) (1− xk,3). The data
rate obtained by user 1 is given by

R
tot,{1}
k,1 = C

0,{1}
k,1 +Bk log2

(
1 +

∣∣hH
k,1w

{1}
k,1

∣∣2
Bkσ2

)
(43)

where C
0,{1}
k,1 ≤ R

0,{1}
k,1 with R

0,{1}
k,1 = Bk log2

(
1 +

|hH
k,1w

{1}
k,0 |2

|hH
k,1w

{1}
k,1 |2+Bkσ2

)
.

6) Case 6 - User 2 selects NR k while users 1 and 3 do
not: Only user 2 belongs to group k (i.e. Nk = {2}) with the
happening probability of (1− xk,1)xk,2 (1− xk,3). The data
rate obtained by user 2 is given by

R
tot,{2}
k,2 = C

0,{2}
k,2 +Bk log2

(
1 +

∣∣hH
k,2w

{2}
k,2

∣∣2
Bkσ2

)
(44)

where C
0,{2}
k,2 ≤ R

0,{2}
k,2 with R

0,{2}
k,2 = Bk log2

(
1 +

|hH
k,2w

{2}
k,0 |2

|hH
k,2w

{2}
k,2 |2+Bkσ2

)
.

7) Case 7 - User 3 selects NR k while users 1 and 2 do
not: Only user 3 belongs to group k (i.e. Nk = {3}) with the
happening probability of (1− xk,1) (1− xk,2)xk,3. The data
rate obtained by user 3 is given by

R
tot,{3}
k,3 = C

0,{3}
k,3 +Bk log2

(
1 +

∣∣hH
k,3w

{3}
k,3

∣∣2
Bkσ2

)
(45)
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R
0,{1,2,3}
k,1 =Bk log2

(
1 +

∣∣hH
k,1w

{1,2,3}
k,0

∣∣2∣∣hH
k,1w

{1,2,3}
k,1

∣∣2 + ∣∣hH
k,1w

{1,2,3}
k,2

∣∣2 + ∣∣hH
k,1w

{1,2,3}
k,3

∣∣2 +Bkσ2

)

R
0,{1,2,3}
k,2 =Bk log2

(
1 +

∣∣hH
k,2w

{1,2,3}
k,0

∣∣2∣∣hH
k,2w

{1,2,3}
k,1

∣∣2 + ∣∣hH
k,2w

{1,2,3}
k,2

∣∣2 + ∣∣hH
k,2w

{1,2,3}
k,3

∣∣2 +Bkσ2

)

R
0,{1,2,3}
k,3 =Bk log2

(
1 +

∣∣hH
k,3w

{1,2,3}
k,0

∣∣2∣∣hH
k,3w

{1,2,3}
k,1

∣∣2 + ∣∣hH
k,3w

{1,2,3}
k,2

∣∣2 + ∣∣hH
k,3w

{1,2,3}
k,3

∣∣2 +Bkσ2

)
. (26)

where C
0,{3}
k,3 ≤ R

0,{3}
k,3 with R

0,{3}
k,3 = Bk log2

(
1 +

|hH
k,3w

{3}
k,0 |2

|hH
k,3w

{3}
k,3 |2+Bkσ2

)
.

The expected data rates achieved by users 1, 2, and 3 on
the same NR k are determined by

R̄tot
k,1 =R

tot,{1}
k,1 xk,1 (1− xk,2) (1− xk,3)

+R
tot,{1,2}
k,1 xk,1xk,2 (1− xk,3)

+R
tot,{1,3}
k,1 xk,1 (1− xk,2)xk,3

+R
tot,{1,2,3}
k,1 xk,1xk,2xk,3 (46)

R̄tot
k,2 =R

tot,{2}
k,2 (1− xk,1)xk,2 (1− xk,3)

+R
tot,{1,2}
k,2 xk,1xk,2 (1− xk,3)

+R
tot,{2,3}
k,2 (1− xk,1)xk,2xk,3

+R
tot,{1,2,3}
k,2 xk,1xk,2xk,3 (47)

and

R̄tot
k,3 =R

tot,{3}
k,3 (1− xk,1) (1− xk,2)xk,3

+R
tot,{1,3}
k,3 xk,1 (1− xk,2)xk,3

+R
tot,{2,3}
k,3 (1− xk,1)xk,2xk,3

+R
tot,{1,2,3}
k,3 xk,1xk,2xk,3, (48)

respectively.

B. Expected Utility

We denote vk,i as the valuation of user i that it can obtain
from downloading one unit data by selecting NR k. Since the
user uses the NR from the BS, it must pay a service fee. We
denote λk,i as the price per data unit by using NR k from the
BS. The utility achieved by user i is determined by

uk,i = vk,iR̄
tot
k,i − λk,iR̄tot

k,i = (vk,i − λk,i) R̄tot
k,i (49)

where R̄tot
k,i is defined in Section V-A.

VI. EVOLUTIONARY GAME APPROACHES

This section presents and discusses the TEG and FEG ap-
proaches as well as their equilibrium existence and uniqueness.
For ease of following the evolutionary game approaches, we
define the following key terms:

• The players are the users.

• The population/group is a set of users selecting the same
NR.

• The strategy of each user is to select one of the available
NRs of the BS

• The utility is the expected utility defined in Section (V-B).
• The solution is the evolutionary equilibrium at which no

user will change its strategy since it already receives the
highest utility, given the strategies of other users.

A. Traditional Evolutionary Game (TEG)

As presented in Section V, the user selecting different NRs
over time can achieve different utilities depending on the
number of other users selecting the same NR and the channel
condition. The average utility achieved by the user, say user
i, over NRs can be determined as follows

ūi =
∑
k∈K

uk,i. (50)

Then, we can formulate the TEG model as follows [15]:

ẋk,i(t) = exp (µ)xk,i(t) [uk,i − ūi] ,∀i ∈ Nk,∀k ∈ K (51)

where ẋk,i(t) is the first-order derivative of xk,i(t), xk,i (0) is
the initial strategy of user i in group k, and µ is the strategy
adaptation/changing rate. Equation (51) expresses that users
dynamically select an NR to achieve higher utility until the
game converges to an equilibrium.

To prove the existence of the TEG, we follow Theorem 1.
First, we let fk,i(t, xk,i) = µxk,i(t) [uk,i(t)− ui(t)], and then
Equation (51) is rewritten as follows

ẋk,i(t) = fk,i (t, xk,i) (52)

given the initial strategy xk,i(0) for all i ∈ Nk, k ∈ K.

THEOREM 1. [41] Problem in (52) has a unique solution if
fk,i(t, xk,i) and its derivation ∂fk,i/∂xk,i are continuous with
respect to t, ∀t ∈ [0, T ]. Then, the strategy of user i selecting
NR k at the ⟨z + 1⟩-th iteration is

x
⟨z+1⟩
k,i (t) = xk,i (0) +

∫ t

0

fk,i(t, x
⟨z⟩
k,i (s)) ds. (53)

Functions x⟨z⟩k,i (t) converges to the equilibrium of the game.

Proof: One effective way to prove Theorem 1 is to
leverage the Banach fixed-point theorem [42], which is well
presented in [41] and therefore omitted in this paper. Instead,
we demonstrate that the TEG used for our system model
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can reach to the equilibrium. First, it is simply observed that
variables xk,i(t), 0 ≤ xk,i(t) ≤ 1, i ∈ Nk, k ∈ K are
continuous respect to t. Moreover, elements of each channel
vector of hk,i(t) are continuous respect to t due to the static
flat-fading channel model. Thus, the expected data rate of each
user, i.e. R̄k,i, is continuous with respect to t. Consequently,
functions uk,i(t) and ui(t) are continuous at every time t.
Overall, we have fk,i(t, xk,i) and ∂fk,i(t,xk,i)

∂xk,i
are continuous.

Therefore, according to Theorem 1, the TEG defined in (52)
(or in (51)) is guaranteed to converge to a unique equilibrium,
which will also be verified by numerical results.

The TEG approach is implemented as follows. First, each
user randomly selects an NR by sending a message to BS.
Then, BS divides te users into groups, each of which consists
of the users selecting the same NR. BS applies the RSMA
scheme to each group by optimizing the common data rate and
beamformers associated with the common message and private
messages according to Algorithm 1. The BS then calculates the
expected data rate for each user as presented in Section V-A.
The data rate information is sent to the corresponding user to
compute its utility according to (49). The user sends the utility
information back to the BS. BS calculates the average utility
of the user and sends this information to the user. The user
can switch its NR selection in the next iteration to achieve a
higher utility. As all users achieve the same utility by selecting
any NRs, no user has an incentive to change its strategy and
the TEG converges to the equilibrium.

B. Fractional Evolutionary Game (FEG)

With the TEG approach presented in Section VI-A, at
time instant t, each user uses the instantaneously achievable
utility functions, i.e. ūi and uk,i, without their memory. The
TEG approach is thus considered to be a memory-disabled
economic process [43]. In this section, we first introduce the
concept of memory-enabled economic process (MeEP), which
is considered to be a core concept of FEG. Then, we present
the use of FEG for modelling the NR selection of the users
with MeEP. The FEG approach is then proven to converge to
a unique equilibrium.

1) Memory-enabled Economic Process (MeEP): We first
define an MeEP. For this, we denote t as the current time
instant, i.e., the time when users make their selection decisions,
and τ ∈ [0, t) as a previous time instant. Then, MeEP is a
process in which its output at the current time instant depends
on the inputs at current and previous time instants [43]. In
other words, the output is a function not only of the input at
the current time instant but also of the input at the previous
instants. To describe the MeEP, we consider an economic
model that consists of an input variable, denoted by X(t), and
an output variable, denoted by Z(t). Then, the relationship
between the input and the output of the economic process
is [43]

Z(t) = Φt
0 (X (τ)) + Z (0) (54)

where Z (0) is the initial state of Z(t) and Φt
0 (X (τ)) is given

by

Φt
0 (X (τ)) :=

∫ t

0

Ωβ (t− τ)X (τ) dτ (55)

with Ωβ (t− τ) being the weight to evaluate the impact of
the economics process of the previous time instants on the
current output. In particular, the function Ωβ(t − τ) captures
the memory dynamics, which has the following form [43]:

Ωβ(t− τ) =
1

Γ(β)(t− τ)1−β
(56)

where Γ (·) is the gamma function and defined by Γ (β) =∫ +∞
0

xβ−1e−xdx. It can be seen from (54)-(56) that the input
X(τ) has the power-law fading impact on the output Z(t). In
the case, we can say that the memory dynamics defined in (56)
can describe the power-law fading impact of the memory on
the current decision-making. To further understand the MeEP,
we give a special case as an example by assuming Z(0) = 0
and Z(t) = Φt

0 (X (τ)), where Z(0) is the constant and hence
does not impact Z(t) as X(t) varies.

First, we consider the unit input variable, i.e., X(τ) =
1,∀τ ∈ [0,∞). Then, the output of the MeEP is [43]

Z(t) =

∫ t

0

Ωβ (t− τ) X (τ)|X(τ)=1,∀τ∈[0,∞) dτ

=

∫ t

0

Ωβ (t− τ) dτ =
tβ

Γ(β + 1)
̸= t.

(57)

In this case, the memory dynamics defined in (56) is not a
unit preserving memory. We can say that the MeEP cannot
remember a constant value during the infinitely long period of
time, which will decay with respect to time and is practical.

According to the Leibniz integral rule, we have

d

dt
Z(t) = Ωβ (0)X(t) +

∫ t

0

[
d

dt
Ωβ (t− τ)

]
X(τ)dτ.

It can be observed that Z(t) depends on both X(t) and X(τ),
and the relationship between them is considered to be the
MeEP, which is expressed by in a different way by taking
the derivation of Z(t) at the order of β as follows

C
0D

β
t Z(t) = X(t) (58)

with initial state of the process output Z (0), where C
0D

β
t Z(t)

is the βth-order Caputo left-sided fractional derivative of
Z(t) [44] given by

C
0D

β
t Z(t) =

1

Γ(⌈β⌉ − β)

∫ t

0

Z(⌈β⌉)(τ)

(t− τ)β+1−⌈β⌉ dτ. (59)

By incorporating the memory effect, the TEG defined in (51)
becomes FEG as follows [43]:

C
0D

β
t xk,i(t) = exp (µ)xk,i(t) [uk,i − ūi] , ∀i, k (60)

where xk,i (0) is user i’s initial strategy and β ∈ (0, 1)
is the order of the fractional derivative and defined as the
memory effect coefficient. With the FEG defined in (60), each
user accounts its past experience as making its NR selection
decision. Moreover, the past experiences at different time
instances differently affect the decision-making of the user.
As such, we can expect that the FEG is better than the TEG
defined in (51), which will be validated by simulation results.
It is notable that when β = 1, Ωβ(t − τ) is a constant,
which transforms the MeEP (i.e. FEG defined in (60)) back to
the memory-disabled economic process, such as TEG defined
in (51).
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2) Proof of Equilibrium Existence: First, we equivalently
convert the FEG defined in (60) into a problem given in
(62). We then show that the existence and uniqueness of the
equilibrium in (62), which is also of FEG.

By X(t) ≜ [xk,i(t)]i∈Nk,k∈K and E (X(t)) ≜
[
exp (µ)

xk,i(t) [uk,i(t)− ui(t)]
]
i∈Nk,k∈K, FEG defined in (60) is then

rewritten as
C
0D

β
t X(t) = E (X(t)) (61)

where X (0) = [xk,i(0)]i∈Nk,k∈K is the initial strategy. We
denote ek,i as an element of vector E. Then, we have the
following theorem:

THEOREM 2. The fractional game defined in (61) can be
transformed into the following equivalent problem

X(t) = X (0) + 0I
β
t E(X(t)),∀t ∈ T (62)

where

0I
β
t E(X(t)) =

∫ t

0

(t− τ)β−1

Γ(β)
E(X(τ))dτ (63)

is the fractional integral [45], if i) ek,i belongs to a set of
the twice differentiable functions and ii) ∂

∂xk,i
ek,i exists and

is bounded. In particular, ∂
∂xk,i

ek,i is bounded meaning that

∃B ∈ R+ : |ek,i(X̂(t))−ek,i(X̃(t))| < B||(X̂(t))−X̃(t)||L1
,

which satisfies the Lipschitz condition.

Proof: We take the derivative of X(t) in (62) at ⌈β⌉-th
order with respect to t, and we have

d⌈β⌉

dt⌈β⌉
X(t) =

d⌈β⌉

dt⌈β⌉

[
0I

β
t E (X(t))

]
= RL

0 D
⌈β⌉−β
t E (X(t))

=
tβ−⌈β⌉

Γ(1− ⌈β⌉+ β)
E (X (0)) + C

0D
β
t E (X(t))

with RL
0 Dβ

t E (X(t)) being defined as the βth-order left-sided
Riemann-Liouville fractional derivative with respect to t, and
the derivation in (B.1) is satisfied. For σ ∈ (0, t), the L1 norm
of tβ−⌈β⌉

Γ(1−⌈β⌉+β)E (X (0)) has an upper bound that is [15]

∥∥∥ tβ−⌈β⌉

Γ(1− ⌈β⌉+ β)
E(X (0))

∥∥∥
L1
≤
∥∥∥ σβ−⌈β⌉

Γ(1− ⌈β⌉+ β)
E(X (0))

∥∥∥
L1
.

(64)
Using the second condition in Theorem 2, Equation (64),

(B.1) in Appendix B, and Inequality (64), we have∥∥∥ d⌈β⌉

dt⌈β⌉
X(t)

∥∥∥
T

≤
∥∥∥ σβ−⌈β⌉

Γ (1− ⌈β⌉+ β)
E (X (0))

∥∥∥
L1

+
∥∥∥0Iβt d⌈β⌉

dt⌈β⌉
E (X(t))

∥∥∥
T

≤
∥∥∥ σβ−⌈β⌉

Γ (1− ⌈β⌉+ β)
E (X (0))

∥∥∥
L1

+
∥∥∥0Iβt d⌈β⌉

dt⌈β⌉
X(t)

∥∥∥
T
AB

(65)

where ∥z∥T ≜
∫
T exp (−µt) ∥z∥L1 dt and A is the cardinality

of { (i, k)| i ∈ Nk, k ∈ K}. For the last term in (65), we

have (B.2). Then, substituting (B.2) into (65), we have∥∥∥ d⌈β⌉

dt⌈β⌉
X(t)

∥∥∥
T

≤
∥∥∥ σβ−⌈β⌉

Γ (1− ⌈β⌉+ β)
E (X (0))

∥∥∥
L1

+
AB

µβ

∥∥∥ d⌈β⌉

ds⌈β⌉
X(t)

∥∥∥
T

⇔
∥∥∥ d⌈β⌉

dt⌈β⌉
X(t)

∥∥∥
T
≤ 1

1− AB
µβ

∥∥∥ σβ−⌈β⌉

Γ (1− ⌈β⌉+ β)
E(X (0))

∥∥∥
L1
.

(66)
As observed from (66), given a large value of µ, AB

µβ < 1

and
∥∥∥ d⌈β⌉

dt⌈β⌉X(t)
∥∥∥
T

is bounded. In this case, we can take the
fractional derivative of X(t) with an order of β ∈ (0, 1) as
follows:

C
0D

β
t X(t) = 0I

⌈β⌉−β
t

d⌈β⌉

dt⌈β⌉
X(t)

= 0I
⌈β⌉−β
t

{ tβ−⌈β⌉

Γ (1− ⌈β⌉+ β)
E (X(0))

+ 0I
β
t

[ d⌈β⌉
dt⌈β⌉

E (X(t))
]}

= E(X(t)). (67)

The derivation in (67) clearly shows that the game in (61)
is equivalent to that given in (62). Therefore, The proof of
Theorem 2 is completed.

Now, we prove the uniqueness of the solution to the problem
defined in (62). Indeed, denote F as an operator, F : DX 7→
DX, where DX is the feasible domain of X. Then, based
on (B.3), we have∥∥∥F X̂(t)− F X̃(t)

∥∥∥
T
<
AB

µβ

∥∥∥X̂(t)− X̃(t)
∥∥∥
T
. (68)

Moreover,
∥∥F X̂(t) − F X̃(t)

∥∥
T <

∥∥X̂(t) − X̃(t)
∥∥
T if µβ ≥

AB. In this case, F satisfies the fixed point theorem implying
the uniqueness of the solution to (62).

3) Stability of the solution to the FEG: We leverage (68)
to prove the stability of the solution to the FEG. Indeed,
we assume that X̂(0) ≜ [x̂k,i(0)]i∈Nk,k∈K and X̃(0) ≜
[x̃k,i(0)]i∈Nk,k∈K are two different initial states that satisfy∥∥∥X̂(0) − X̃(0)

∥∥∥
L1
≤ φ. Furthermore, we denote X̂(t) and

X̃(t), for all t are the solutions to the FEG corresponding to
X̂(0) and X̃(0), respectively. Then, based on (68), we have
the following inequality:∥∥∥X̂(t)− X̃(t)

∥∥∥
T
<
AB

µβ

∥∥∥X̂(0)− X̃(0)
∥∥∥
L1

<
AB

µβ
φ ≜ ϵ. (69)

The inequality given in (69) implies the stability for the
solution to the FEG if and only if AB

µβ < 1.
The implementation steps of the FEG approach are similar

to those of the TEG approach. The difference is that each user
makes its NR decision based on the returned average utility
and its previous decision, which is stored in the user’s memory
storage.
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TABLE II: Simulation Parameters

Parameter Value Parameter Value

L 3 N 3
K 2 Bk 12× 15× 2 kHz
µ −2 λk,i 5× 10−7

vk,i 10−6 Pk 26dBm
β {0.7, 0.8, 0.9, 1} σ2 -174 dBm/Hz

VII. PERFORMANCE EVALUATION

In this section, we provide simulation results to validate the
game approaches. The game approach with β = 1 corresponds
to the TEG approach, while the game with β < 1 corresponds
to the FEG approach. In particular for the FEG approaches,
we consider the cases of β = 0.9, 0.8 and 0.7. The users are
uniformly distributed in a square area of 300 m × 300 m, and
the BS is placed at the center of area and at a height of 10 m
above the ground level. The channel corresponding to NR k
from the BS to user i is

√
10γPL,i/10h̄k,i, where γPL,i = 30 +

2.2 log(di) is the large-scale fading with di being the distance
(in meter) between the BS and the user, and h̄k,i ∼ CN (0, I)
is the Rayleigh fading channel. Other simulation parameters
are provided in Table II [31].
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Fig. 2: Proportion of users selecting different NRs.

First, it is important to discuss how the NR selection
strategies change over evolutionary time, which are illustrated
in Figs. 2(a), (b) and (c). As can be seen that the strategies
of the users selecting different NRs of both TEG and FEG
approaches are able to converge to an equilibrium point over
time. This results validate the equilibrium existence of the
games. In addition, the strategies of the users as the evolution-
ary games with higher values of β converge to the equilibrium
faster. To evaluate the effectiveness of the proposed game, we
introduce the random pairing method as a baseline scheme in
which at each time step, each user randomly selects one of the
available NRs of the BS. With the random pairing scheme,
as shown in Fig. 2 (d), the users’ strategies show a large
fluctuation and do not converge to the equilibrium. To further
verify these results, we show the utilities obtained by users 1,
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Fig. 3: The users’ utilities.

2 and 3 over time in Fig. 3(a), (b) and (c), respectively. As
observed from these figures, as β decreases, the convergence
speed of the users’ utilities is slower. The reason is that
with a low value of β (e.g., β = 0.7), the memory effects
become more important in the decision-making of the users,
meaning that users will adapt more slowly and cautiously.
Fig. 3(d) shows the sum utility obtained by the proposed game
approaches and the baseline scheme. As seen, the users’ sum
utility largely fluctuates over time steps. This means that at any
time step, users may not know their utilities obtained in the
next time step. Moreover, the proposed game approaches offer
the higher sum utility, compared to the baseline scheme. These
results clearly demonstrate that our proposed game approaches
outperform the baseline scheme in terms of stability and utility.
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Fig. 4: (a) The frequency of strategy adaptation (b) the range
of the strategy adaption of the users.

Fig. 4(a) shows the strategy adaptation frequency of the
users with different values of β, and Fig. 4(b) shows the
fluctuation range of the strategy adaptation of the users. Thus,
Figs. 4(a) and (b) have the same phenomenon. As observed
from Fig. 4(a), the users’ strategy adaptation fluctuates less
as β decreases. This implies that users with a low value of
β have less re-activeness, resulting in the slower convergence
speed of the users.

An important question is that how we benefit the less
re-activeness and low strategy adaptation frequency of the
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Fig. 5: The solution stability of the population game.

users? In other words, is the FEG approach better than TEG
approach? Indeed, the strategy adaptation frequency of the
users is lower, meaning that users will switch among the NRs
less often. Thus, BS spends less computing and communi-
cation resources (i.e. performing the channel estimation and
optimizing beamformers) to establish communications of the
users. Therefore, in the terms of network resource cost, the
FEG approach is better than the TEG approach.

Next, we discuss the stability of the users’ strategies, which
is represented by the direction field of the replicator dynamics
in Figs. 5(a), (b) and (c). In these figures, we use the strategy
pairs (i.e., x1,1 and x2,2, x1,2 and x2,3, and x2,1 and x1,3)
to show the stability of the solution. Moreover, the red star
marks the equilibrium state of the games, and the the blue rows
represent strategy adaptations of the users. As seen, the blue
rows in the FEG ultimately reach and stabilize at the optimal
solution, i.e., the red star. The results shown in Figs. 5(a), (b)
and (c) verify the robustness and stability of the solution to
the evolutionary game approaches.

We now investigate the impact of the number of available
NRs K on the total utility obtained by users. As shown in
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Fig. 6: (a) The total utility of the users vs. the number of
NRs, and (b), (c) and (d) the proportions of users 1, 2, and 3
selecting different NRs in the case of K = 3 NRs.
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Fig. 7: The utility of user 1 and total utility of the users vs.
the number of users.

Fig. 6(a), as K increases, the total utility of the users increases.
The reason is that users have more NRs to select, resulting in
higher possibilities to find an NR that leads to its high expected
data rate and utility. This is further verified in Fig. 6(b), (c) and
(d) in the case of K = 3 users, where each user selects one
NR. Users perform the NR selection to avoid the interference
caused by other users. This is reasonable in the real-world
scenarios. That is, each player typically selects the strategy to
avoid interest conflict with others.

Next, we discuss how the number of users in the network
impacts the utility of each of them and the total utility of all
users. Without loss of generality, the utility obtained by user 1
is considered. As shown in Fig. 7, the utility of user 1 seems
to be unchanged. The reason is that the BS has two NRs, thus
user 1 is always be able to find one NR that user 2 does not
select. For example, as user 2 selects NR 1, user 1 will select
NR 2. Therefore, the utility of user 1 is the same in these two
cases. However, as the number of users is 3, the utility of user
1 decreases. This is due to the fact that as the user 1 can select
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Fig. 8: Proportion of user 1 select NR 1 with different delay
values.

any NR, there are four possible cases for the other two users.
This reduces the expected data rate achieved by user 1 and
leads to the reduced utility of user 1. Fig. 7 further shows that
the total utility of the users increases with the increase of the
number of users. This is due to the fact that the RSMA scheme
can appropriately determine the power splitting of each user
to achieve the theoretically maximal rate region, which results
in increasing the total utility of users.

The aforementioned results clearly demonstrate that both
TEG and FEG are able to converge to the equilibrium. Note
that at each time t, the users need information of the average
utility broadcast by the BS to make its NR selection. However,
in some scenarios with bad channel quality, the information
may not be available to the users at time t. Thus, two
questions are that (i) is it possible for the users to leverage
the information in the past, i.e. t− δ with δ being the number
of units of time?, and (ii) what is the maximum value of δ
that the users can use for their decisions while guaranteeing
the convergence?. We show the simulation results to answer
these questions. First, we reformulate the replicator dynamic

process of TEG and FEG by incorporating δ as follows

ẋk,i(t) = exp (µ)xk,i (t− δ) [uk,i (t− δ)− ūi (t− δ)]
C
0D

β
t xk,i(t) = exp (µ)xk,i (t− δ) [uk,i (t− δ)− ūi (t− δ)]

(70)

for all i ∈ Nk, k ∈ K. We then discuss how the delay value of
δ impacts on the equilibrium of the TEG and FEG approaches.
Without loss of generality, we consider the pairing strategy
of user 1 at NR 1 as the TEG is used (Fig. 8(a)) and the
FEG approach is used (Figs. 8(b) and (c)). As observed from
Fig. 8(a), the decision-making process of user 1 fluctuates
as the delay information changes at δ > 0. In particular,
as δ is small, i.e. δ = 15, the strategy of user 1 (and
TEG)still converges to the equilibrium. However, as δ is large,
i.e. δ = 30, TEG does not converge to the equilibrium.
These results imply that as exploiting the ”fresh” information
with the small delay, i.e. δ < 30, the game still reaches to
the convergence. As δ is higher, the strategy adaptation of
the users has larger fluctuations, and the game reaches the
equilibrium more slowly. We can say that the game is difficult
to converge to the equilibrium as the users leverages older
information. To verify the robustness of the FEG schemes,
Fig. 8(b) and (c) show the convergence of user 1’s strategy
with the cases of β = 0.8 and 0.9. As seen, the FEG scheme
with β = 0.9 and β = 0.8 is able to converge to the
equilibrium with a delay value of 50 and 60. Compared with
the TEG, the FEG scheme allows users to leverage much older
information for their decisions. In this case, we say that the
FEG scheme is more robust than the TEG scheme.

VIII. CONCLUSIONS

In this paper, we have addressed the dynamic NR selection
problem in the RSMA-enabled network. Specifically, users
in RSMA-enabled networks are able to dynamically select
different NRs over time to achieve its higher utility. We have
developed the SCA-based iterative algorithm to design the
optimal beamformers of the common and private messages for
the users in the same group. To model the NR adaptation of the
users, we have leveraged two game approaches, namely TEG
and FEG. In particular with the FEG approach, the memory
effect (i.e. the past experience) of the users has been taken
into account their decision-making. We have proven the unique
and stable solution to the evolutionary game approaches. Both
the theoretical analysis and simulation results have validated
the equilibrium and the stability of the solution of the game
approaches. Simulation results further show that the FEG ap-
proach outperforms the TEG approach in terms of adaptation
strategy rate. This means that with the FEG approach, the
BS requires less computing and computing resources (e.g.
optimizing beamformers of the RSMA), since users have low
frequency of NR selection. They further confirm that with the
fraction game, users are able to exploit older information for
their decision-making.

APPENDIX A: FUNDAMENTAL INEQUALITIES

We first consider function f (x) = log2 (1 + 1/x). Given
x > 0, this function is simply proved to be convex by taking
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the second derivative. Moreover, with x̄ > 0, based on the
first-order Taylor approximation, we have [46], [47]

f (x) = log2

(
1 +

1

x

)
≥ log2

(
1 +

1

x̄

)
+
∂f (x)

∂x

∣∣∣∣
x=x̄

(x− x̄)

= log2

(
1 +

1

x̄

)
+

1

ln 2 (1 + x̄)

(
1− x

x̄

)
. (A.1)

Now, we consider function f (x, y) = log2
(
1+ 1

xy

)
that is also

simply proven to be convex in the domain (x > 0, y > 0).
Therefore, it follows that [46]

f (x, y) = log2

(
1 +

1

xy

)
≥f (x̄, ȳ) + ⟨∇f (x̄, ȳ) , (x, y)− (x̄, ȳ)⟩

= log2 (1 + 1/x̄ȳ) +
1/x̄ȳ

ln 2 (1 + 1/x̄ȳ)

(
2− x

x̄
− y

ȳ

)
(A.2)

for x > 0, y > 0, x̄ > 0, and ȳ > 0. By substituting x→ 1/x
and x̄→ 1/x̄, we have

log2

(
1 +

x

y

)
≥ log2 (1 + x̄/ȳ) +

x̄/ȳ

ln 2 (1 + x̄/ȳ)

×
(
2− x̄

x
− y

ȳ

)
. (A.3)

APPENDIX B: UPPERBOUNDS

First, we can show that

RL
0 D

⌈β⌉−β
t E (X(t))

=
1

Γ(1− ⌈β⌉+ β)

d

dt

∫ t

0

E(X(τ))

(t− τ)⌈β⌉−β
dτ

=
1

Γ(1− ⌈β⌉+ β)

d

dt

∫ t

0

θβ−⌈β⌉E(X(t− θ))dθ

=
1

Γ(1− ⌈β⌉+ β)

[
tβ−⌈β⌉E(X0) +

∫ t

0

θβ−⌈β⌉

× d

dt
E(X(t− θ))dθ

]
=

1

Γ(1− ⌈β⌉+ β)

[
tβ−⌈β⌉E(X0) +

∫ t

0
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× d

dτ
E(X(τ))dτ
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E(X0) + 0I

β
t

[ d⌈β⌉
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E(X(t))
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. (B.1)

In addition, it follows that [15]∥∥∥0Iβt d⌈β⌉

dt⌈β⌉
X(t)

∥∥∥
T

=
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and

∥F X̂(t)− F X̃(t)∥T
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